VIOLIN Logo
VO Banner
Search: for Help
About
Introduction
Statistics
VIOLIN News
Your VIOLIN
Register or Login
Submission
Tutorial
Vaccine & Components
Vaxquery
Vaxgen
VBLAST
Protegen
VirmugenDB
DNAVaxDB
CanVaxKB
Vaxjo
Vaxvec
Vevax
Huvax
Vaccine Mechanisms
Vaximmutordb
Vaxism
Vaxar
Vaccine Literature
VO-SciMiner
Litesearch
Vaxmesh
Vaxlert
Vaccine Design
Vaxign
Community Efforts
Vaccine Ontology
ICoVax 2012
ICoVax 2013
Advisory Committee
Vaccine Society
Vaxperts
VaxPub
VaxCom
VaxLaw
VaxMedia
VaxMeet
VaxFund
VaxCareer
Data Exchange
V-Utilities
VIOLINML
Help & Documents
Publications
Documents
FAQs
Links
Acknowledgements
Disclaimer
Contact Us
UMMS Logo

SARS-CoV

Table of Contents
  1. General Information
    1. NCBI Taxonomy ID
    2. Disease
    3. Introduction
    4. Microbial Pathogenesis
    5. Host Ranges and Animal Models
    6. Host Protective Immunity
  2. Vaccine Related Pathogen Genes
    1. S protein from SARS Urbani (Other)
    2. S protein (Protective antigen)
    3. E (Virmugen)
  3. Vaccine Information
    1. RBD-rAAV-SARS-CoV
    2. RBD-rAAV-SARS-CoV-02
    3. rMV- SARS-CoV -S/Ssol
    4. SARS Subunit Spike Protein Vaccine
    5. SARS-CoV E gene mutant vaccine
  4. References
I. General Information
1. NCBI Taxonomy ID:
694009
2. Disease:
Severe Acute Respiratory Syndrome (SARS)
3. Introduction
Severe acute respiratory syndrome (SARS; pronounced /ˈsɑrz/ sarz) is a respiratory disease in humans which is caused by the SARS coronavirus (SARS-CoV). There has been one near pandemic to date, between the months of November 2002 and July 2003, with 8,096 known infected cases and 774 confirmed human deaths (a case-fatality rate of 9.6%) worldwide being listed in the World Health Organization's (WHO) 21 April 2004 concluding report. Within a matter of weeks in early 2003, SARS spread from the Guangdong province of China to rapidly infect individuals in some 37 countries around the world (Wiki: SARS).
4. Microbial Pathogenesis
Infection by different coronaviruses cause in the host alteration in the transcription and translation patterns, in the cell cycle, the cytoskeleton, apoptosis and coagulation pathways, inflammation and immune and stress responses. The balance between genes up- and down-regulated could explain the pathogenesis caused by these viruses (Wiki: SARS).
5. Host Ranges and Animal Models
SARS-CoV has been isolated from humans, civet cats, raccoon dogs, swine and bats, suggesting that several animal species may function as natural reservoirs for future outbreaks. The Chinese horseshoe bat, which is abundant across Southeast Asia, is probably the natural reservoir for SARS-CoV. Ciliated airway epithelium models derived from tracheobronchial airway epithelium of Balb-c mice (MAE), Golden Syrian hamsters (HmAE), and rhesus macaques (RhMAE) have been successfully developed (Sims et al., 2008).
6. Host Protective Immunity
Passive immunization has been successful in establishing protection from SARS-CoV suggesting an important role for neutralizing antibodies (Wiki: SARS).
1. E
  • Gene Name : E
  • Sequence Strain (Species/Organism) : Severe acute respiratory syndrome-related coronavirus
  • NCBI Gene ID : 1489671
  • NCBI Protein GI : 29836499
  • Locus Tag : sars4
  • Protein Accession : NP_828854
  • Taxonomy ID : 694009
  • Gene Starting Position : 26116
  • Gene Ending Position : 26346
  • Gene Strand (Orientation) : +
  • Protein Name : protein E
  • Protein pI : 6.3
  • Protein Weight : 6972.52
  • Protein Length : 76
  • Protein Note : E. coli expression reported by Shen et al. (2003)
  • DNA Sequence : Show Sequence
    >gi|30271926:26116-26346 SARS coronavirus, complete genome
    TATGTACTCATTCGTTTCGGAAGAAACAGGTACGTTAATAGTTAATAGCGTACTTCTTTTTCTTGCTTTC
    GTGGTATTCTTGCTAGTCACACTAGCCATCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAATATTG
    TTAACGTGAGTTTAGTAAAACCAACGGTTTACGTCTACTCGCGTGTTAAAAATCTGAACTCTTCTGAAGG
    AGTTCCTGATCTTCTGGTCTA
  • Protein Sequence : Show Sequence
    >gi|29836499|ref|NP_828854.1| protein E [Severe acute respiratory syndrome-related coronavirus]
    MYSFVSEETGTLIVNSVLLFLAFVVFLLVTLAILTALRLCAYCCNIVNVSLVKPTVYVYSRVKNLNSSEG
    VPDLLV
  • Molecule Role : Virmugen
  • Molecule Role Annotation : An E mutant is attenuated in hamsters and induces significant protection from challenge with wild type SARS (Lamirande et al., 2008).
  • Related Vaccine(s): SARS-CoV E gene mutant vaccine
2. S protein
  • Gene Name : S protein
  • Sequence Strain (Species/Organism) : Severe acute respiratory syndrome-related coronavirus
  • VO ID : VO_0011320
  • NCBI Gene ID : 1489668
  • NCBI Protein GI : 29836496
  • Locus Tag : sars2
  • Protein Accession : NP_828851
  • Taxonomy ID : 694009
  • Gene Starting Position : 21491
  • Gene Ending Position : 25258
  • Gene Strand (Orientation) : +
  • Protein Name : E2 glycoprotein precursor
  • Protein pI : 5.6
  • Protein Weight : 130077.89
  • Protein Length : 1255
  • Protein Note : As established by Krokhin et al. (2003), the glycosylated spike protein (as well as the nucleocapsid protein) can be detected in infected cell culture supernatants with antisera from SARS patients.
  • DNA Sequence : Show Sequence
    >gi|30271926:21491-25258 SARS coronavirus, complete genome
    CATGTTTATTTTCTTATTATTTCTTACTCTCACTAGTGGTAGTGACCTTGACCGGTGCACCACTTTTGAT
    GATGTTCAAGCTCCTAATTACACTCAACATACTTCATCTATGAGGGGGGTTTACTATCCTGATGAAATTT
    TTAGATCAGACACTCTTTATTTAACTCAGGATTTATTTCTTCCATTTTATTCTAATGTTACAGGGTTTCA
    TACTATTAATCATACGTTTGGCAACCCTGTCATACCTTTTAAGGATGGTATTTATTTTGCTGCCACAGAG
    AAATCAAATGTTGTCCGTGGTTGGGTTTTTGGTTCTACCATGAACAACAAGTCACAGTCGGTGATTATTA
    TTAACAATTCTACTAATGTTGTTATACGAGCATGTAACTTTGAATTGTGTGACAACCCTTTCTTTGCTGT
    TTCTAAACCCATGGGTACACAGACACATACTATGATATTCGATAATGCATTTAATTGCACTTTCGAGTAC
    ATATCTGATGCCTTTTCGCTTGATGTTTCAGAAAAGTCAGGTAATTTTAAACACTTACGAGAGTTTGTGT
    TTAAAAATAAAGATGGGTTTCTCTATGTTTATAAGGGCTATCAACCTATAGATGTAGTTCGTGATCTACC
    TTCTGGTTTTAACACTTTGAAACCTATTTTTAAGTTGCCTCTTGGTATTAACATTACAAATTTTAGAGCC
    ATTCTTACAGCCTTTTCACCTGCTCAAGACATTTGGGGCACGTCAGCTGCAGCCTATTTTGTTGGCTATT
    TAAAGCCAACTACATTTATGCTCAAGTATGATGAAAATGGTACAATCACAGATGCTGTTGATTGTTCTCA
    AAATCCACTTGCTGAACTCAAATGCTCTGTTAAGAGCTTTGAGATTGACAAAGGAATTTACCAGACCTCT
    AATTTCAGGGTTGTTCCCTCAGGAGATGTTGTGAGATTCCCTAATATTACAAACTTGTGTCCTTTTGGAG
    AGGTTTTTAATGCTACTAAATTCCCTTCTGTCTATGCATGGGAGAGAAAAAAAATTTCTAATTGTGTTGC
    TGATTACTCTGTGCTCTACAACTCAACATTTTTTTCAACCTTTAAGTGCTATGGCGTTTCTGCCACTAAG
    TTGAATGATCTTTGCTTCTCCAATGTCTATGCAGATTCTTTTGTAGTCAAGGGAGATGATGTAAGACAAA
    TAGCGCCAGGACAAACTGGTGTTATTGCTGATTATAATTATAAATTGCCAGATGATTTCATGGGTTGTGT
    CCTTGCTTGGAATACTAGGAACATTGATGCTACTTCAACTGGTAATTATAATTATAAATATAGGTATCTT
    AGACATGGCAAGCTTAGGCCCTTTGAGAGAGACATATCTAATGTGCCTTTCTCCCCTGATGGCAAACCTT
    GCACCCCACCTGCTCTTAATTGTTATTGGCCATTAAATGATTATGGTTTTTACACCACTACTGGCATTGG
    CTACCAACCTTACAGAGTTGTAGTACTTTCTTTTGAACTTTTAAATGCACCGGCCACGGTTTGTGGACCA
    AAATTATCCACTGACCTTATTAAGAACCAGTGTGTCAATTTTAATTTTAATGGACTCACTGGTACTGGTG
    TGTTAACTCCTTCTTCAAAGAGATTTCAACCATTTCAACAATTTGGCCGTGATGTTTCTGATTTCACTGA
    TTCCGTTCGAGATCCTAAAACATCTGAAATATTAGACATTTCACCTTGCGCTTTTGGGGGTGTAAGTGTA
    ATTACACCTGGAACAAATGCTTCATCTGAAGTTGCTGTTCTATATCAAGATGTTAACTGCACTGATGTTT
    CTACAGCAATTCATGCAGATCAACTCACACCAGCTTGGCGCATATATTCTACTGGAAACAATGTATTCCA
    GACTCAAGCAGGCTGTCTTATAGGAGCTGAGCATGTCGACACTTCTTATGAGTGCGACATTCCTATTGGA
    GCTGGCATTTGTGCTAGTTACCATACAGTTTCTTTATTACGTAGTACTAGCCAAAAATCTATTGTGGCTT
    ATACTATGTCTTTAGGTGCTGATAGTTCAATTGCTTACTCTAATAACACCATTGCTATACCTACTAACTT
    TTCAATTAGCATTACTACAGAAGTAATGCCTGTTTCTATGGCTAAAACCTCCGTAGATTGTAATATGTAC
    ATCTGCGGAGATTCTACTGAATGTGCTAATTTGCTTCTCCAATATGGTAGCTTTTGCACACAACTAAATC
    GTGCACTCTCAGGTATTGCTGCTGAACAGGATCGCAACACACGTGAAGTGTTCGCTCAAGTCAAACAAAT
    GTACAAAACCCCAACTTTGAAATATTTTGGTGGTTTTAATTTTTCACAAATATTACCTGACCCTCTAAAG
    CCAACTAAGAGGTCTTTTATTGAGGACTTGCTCTTTAATAAGGTGACACTCGCTGATGCTGGCTTCATGA
    AGCAATATGGCGAATGCCTAGGTGATATTAATGCTAGAGATCTCATTTGTGCGCAGAAGTTCAATGGACT
    TACAGTGTTGCCACCTCTGCTCACTGATGATATGATTGCTGCCTACACTGCTGCTCTAGTTAGTGGTACT
    GCCACTGCTGGATGGACATTTGGTGCTGGCGCTGCTCTTCAAATACCTTTTGCTATGCAAATGGCATATA
    GGTTCAATGGCATTGGAGTTACCCAAAATGTTCTCTATGAGAACCAAAAACAAATCGCCAACCAATTTAA
    CAAGGCGATTAGTCAAATTCAAGAATCACTTACAACAACATCAACTGCATTGGGCAAGCTGCAAGACGTT
    GTTAACCAGAATGCTCAAGCATTAAACACACTTGTTAAACAACTTAGCTCTAATTTTGGTGCAATTTCAA
    GTGTGCTAAATGATATCCTTTCGCGACTTGATAAAGTCGAGGCGGAGGTACAAATTGACAGGTTAATTAC
    AGGCAGACTTCAAAGCCTTCAAACCTATGTAACACAACAACTAATCAGGGCTGCTGAAATCAGGGCTTCT
    GCTAATCTTGCTGCTACTAAAATGTCTGAGTGTGTTCTTGGACAATCAAAAAGAGTTGACTTTTGTGGAA
    AGGGCTACCACCTTATGTCCTTCCCACAAGCAGCCCCGCATGGTGTTGTCTTCCTACATGTCACGTATGT
    GCCATCCCAGGAGAGGAACTTCACCACAGCGCCAGCAATTTGTCATGAAGGCAAAGCATACTTCCCTCGT
    GAAGGTGTTTTTGTGTTTAATGGCACTTCTTGGTTTATTACACAGAGGAACTTCTTTTCTCCACAAATAA
    TTACTACAGACAATACATTTGTCTCAGGAAATTGTGATGTCGTTATTGGCATCATTAACAACACAGTTTA
    TGATCCTCTGCAACCTGAGCTTGACTCATTCAAAGAAGAGCTGGACAAGTACTTCAAAAATCATACATCA
    CCAGATGTTGATCTTGGCGACATTTCAGGCATTAACGCTTCTGTCGTCAACATTCAAAAAGAAATTGACC
    GCCTCAATGAGGTCGCTAAAAATTTAAATGAATCACTCATTGACCTTCAAGAATTGGGAAAATATGAGCA
    ATATATTAAATGGCCTTGGTATGTTTGGCTCGGCTTCATTGCTGGACTAATTGCCATCGTCATGGTTACA
    ATCTTGCTTTGTTGCATGACTAGTTGTTGCAGTTGCCTCAAGGGTGCATGCTCTTGTGGTTCTTGCTGCA
    AGTTTGATGAGGATGACTCTGAGCCAGTTCTCAAGGGTGTCAAATTACATTACACATA
  • Protein Sequence : Show Sequence
    >gi|29836496|ref|NP_828851.1| E2 glycoprotein precursor [Severe acute respiratory syndrome-related coronavirus]
    MFIFLLFLTLTSGSDLDRCTTFDDVQAPNYTQHTSSMRGVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFH
    TINHTFGNPVIPFKDGIYFAATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFFAV
    SKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVFKNKDGFLYVYKGYQPIDVVRDLP
    SGFNTLKPIFKLPLGINITNFRAILTAFSPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQ
    NPLAELKCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPSVYAWERKKISNCVA
    DYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCV
    LAWNTRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLNDYGFYTTTGIG
    YQPYRVVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNFNGLTGTGVLTPSSKRFQPFQQFGRDVSDFTD
    SVRDPKTSEILDISPCAFGGVSVITPGTNASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNNVFQ
    TQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQKSIVAYTMSLGADSSIAYSNNTIAIPTNF
    SISITTEVMPVSMAKTSVDCNMYICGDSTECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQM
    YKTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAGFMKQYGECLGDINARDLICAQKFNGL
    TVLPPLLTDDMIAAYTAALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFN
    KAISQIQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLIT
    GRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQAAPHGVVFLHVTYV
    PSQERNFTTAPAICHEGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNTVY
    DPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQ
    YIKWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : The receptor-binding domain (RBD) of SARS-CoV spike (S) protein is an important target in developing safe and effective SARS vaccines. A previous study has demonstrated that vaccination with adeno-associated virus encoding RBD (RBD-rAAV) induces high titer of neutralizing antibodies. The immune responses and protective effect of the immunization with RBD-rAAV prime/RBD-specific T cell peptide boost were assessed. Compared with the RBD-rAAV prime/boost vaccination, RBD-rAAV prime/RBD-peptide (RBD-Pep) boost induced similar levels of Th1 and neutralizing antibody responses that protected the vaccinated mice from subsequent SARS-CoV challenge, but stronger Th2 and CTL responses. No significant immune responses and protective effects were detected in mice vaccinated with RBD-Pep or blank AAV alone (Du et al., 2008).
  • Related Vaccine(s): rMV- SARS-CoV -S/Ssol , SARS Subunit Spike Protein Vaccine
3. S protein from SARS Urbani
  • Gene Name : S protein from SARS Urbani
  • Sequence Strain (Species/Organism) : SARS coronavirus Urbani
  • NCBI Protein GI : 30027620
  • Other Database IDs : CDD:150170
    CDD:190049
  • Taxonomy ID : 228330
  • Gene Strand (Orientation) : ?
  • Protein Name : S protein
  • Protein Length : 1255
  • Protein Note : Spike receptor binding domain; pfam09408
  • Protein Sequence : Show Sequence
    >gi|30027620|gb|AAP13441.1| S protein [SARS coronavirus Urbani]
    MFIFLLFLTLTSGSDLDRCTTFDDVQAPNYTQHTSSMRGVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFH
    TINHTFGNPVIPFKDGIYFAATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFFAV
    SKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVFKNKDGFLYVYKGYQPIDVVRDLP
    SGFNTLKPIFKLPLGINITNFRAILTAFSPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQ
    NPLAELKCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPSVYAWERKKISNCVA
    DYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCV
    LAWNTRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLNDYGFYTTTGIG
    YQPYRVVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNFNGLTGTGVLTPSSKRFQPFQQFGRDVSDFTD
    SVRDPKTSEILDISPCSFGGVSVITPGTNASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNNVFQ
    TQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQKSIVAYTMSLGADSSIAYSNNTIAIPTNF
    SISITTEVMPVSMAKTSVDCNMYICGDSTECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQM
    YKTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAGFMKQYGECLGDINARDLICAQKFNGL
    TVLPPLLTDDMIAAYTAALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFN
    KAISQIQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLIT
    GRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQAAPHGVVFLHVTYV
    PSQERNFTTAPAICHEGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNTVY
    DPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQ
    YIKWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT
  • Molecule Role : Other
III. Vaccine Information
1. RBD-rAAV-SARS-CoV
a. Vaccine Ontology ID:
VO_0004678
b. Type:
Recombinant vector vaccine
c. Status:
Research
d. Host Species for Licensed Use:
Baboon
e. Preparation
Inactivated SARS coronavirus (SARS-CoV) vaccine with adjuvant (Zheng et al., 2008).
f. Immunization Route
Intramuscular injection (i.m.)
g. Mouse Response
  • Vaccination Protocol: Intranasal vaccination with RBD-rAAV (Zheng et al., 2008).
  • Vaccine Immune Response Type: VO_0000287
  • Challenge Protocol: Mice were challenged with 105 TCID50f SARS-CoV strain GZ50 (Zheng et al., 2008).
  • Efficacy: RBD-rAAV vaccination provoked a prolonged antibody response with continually increasing levels of neutralising activity. When compared with the RBD-rAAV prime/boost vaccination, RBD-rAAV prime/RBD-peptide boost induced similar levels of Th1 and neutralising antibody responses that protected vaccinated mice from subsequent SARS-CoV challenges,but stronger Th2 and CTL responses (Zheng et al., 2008).
2. RBD-rAAV-SARS-CoV-02
a. Vaccine Ontology ID:
VO_0004679
b. Type:
Recombinant vector vaccine
c. Status:
Research
d. Host Species for Licensed Use:
Baboon
e. Preparation
RBD-rAAV prime/RBD-specific T cell peptide boost (Du et al., 2008).
f. Immunization Route
Intramuscular injection (i.m.)
g. Mouse Response
  • Vaccination Protocol: Mice were separated into 4 groups (9 mice per group) and primed with RBD-rAAV [intramuscular (i.m.), 2 × 1011 VP /200 μl)] or RBD-peptides (N50 and N60, 50 μg each) plus CpG ODN (25 μg) [subcutaneous, (s.c.)] or blank AAV, and boosted with RBD-rAAV or RBD-Pep or AAV, respectively (Du et al., 2008).
  • Vaccine Immune Response Type: VO_0003057
  • Challenge Protocol: Forty days post-vaccination, mice were anaesthetized with isoflurane and i.n. inoculated with 50 μl of SARS-CoV strain GZ50 (5 × 105 TCID50) (Du et al., 2008).
  • Efficacy: Compared with the RBD-rAAV prime/boost vaccination, RBD-rAAV prime/RBD-peptide (RBD-Pep) boost induced similar levels of Th1 and neutralizing antibody responses that protected the vaccinated mice from subsequent SARS-CoV challenge, but stronger Th2 and CTL responses. No significant immune responses and protective effects were detected in mice vaccinated with RBD-Pep or blank AAV alone (Du et al., 2008).
3. rMV- SARS-CoV -S/Ssol
a. Vaccine Ontology ID:
VO_0004711
b. Type:
Recombinant vector vaccine
c. Status:
Research
d. Host Species for Licensed Use:
Baboon
e. Preparation
Live attenuated recombinant measles vaccine (MV) candidates expressing either the membrane-anchored SARS-CoV spike (S) protein or its secreted soluble ectodomain (Ssol) (Escriou et al., 2014).
f. Immunization Route
Intramuscular injection (i.m.)
g. Mouse Response
  • Vaccination Protocol: Mice were immunized with two intraperitoneal (i.p.) injections at 4-week interval of 105 TCID50 of MV-S or MV-Ssol recombinant viruses (Escriou et al., 2014).
  • Vaccine Immune Response Type: VO_0003057
  • Challenge Protocol: Mice were inoculated intranasally with 105 pfu of SARS-CoV five weeks after the second immunization (Escriou et al., 2014).
  • Efficacy: Recombinant MV expressing the anchored full-length S induced the highest titers of neutralizing antibodies and fully protected immunized animals from intranasal infectious challenge with SARS-CoV (Escriou et al., 2014).
4. SARS Subunit Spike Protein Vaccine
a. Vaccine Ontology ID:
VO_0011486
b. Type:
Recombinant vector vaccine
c. Status:
Research
d. Gene Engineering of S protein
  • Type: Recombinant vector construction
  • Description:
  • Detailed Gene Information: Click here.
e. Adjuvant: CpG DNA vaccine adjuvant
f. Vector:
Adeno-associated virus (Du et al., 2008).
g. Immunization Route
Subcutaneous injection
h. Mouse Response
  • Host Strain: BALB/c
  • Vaccination Protocol: Mice were Mice were separated into 4 groups (9 mice per group) and primed with RBD-rAAV [intramuscular (i.m.), 2 × 1011 VP /200 μl)] or RBD-peptides (N50 and N60, 50 μg each) plus CpG ODN (25 μg) [subcutaneous, (s.c.)] or blank AAV, and boosted with RBD-rAAV or RBD-Pep or AAV, respectively (Du et al., 2008).
  • Challenge Protocol: Mice intranasally challenged with SARS-CoV strain GZ50 40 days post-vaccination (Du et al., 2008).
  • Efficacy: SARS-CoV viral load in lung tissues was significantly reduced in mice vaccinated with RBD-Pep. Very low level of viral load was detected in lung tissues of RBD-rAAV prime/RBD-Pep boost group, similar to that in lung tissues of RBD-rAAV prime/RBD-rAAV boost group. Vaccination of RBD-rAAV prime/RBD-peptide boost was able to significantly inhibit SARS-CoV infection (Du et al., 2008).
5. SARS-CoV E gene mutant vaccine
a. Vaccine Ontology ID:
VO_0002993
b. Type:
Live, attenuated vaccine
c. Status:
Research
d. Host Species as Laboratory Animal Model:
Hamster
e. Gene Engineering of E
f. Immunization Route
intranasal immunization
g. Hamster Response
IV. References
1. Du et al., 2008: Du L, Zhao G, Lin Y, Chan C, He Y, Jiang S, Wu C, Jin DY, Yuen KY, Zhou Y, Zheng BJ. Priming with rAAV encoding RBD of SARS-CoV S protein and boosting with RBD-specific peptides for T cell epitopes elevated humoral and cellular immune responses against SARS-CoV infection. Vaccine. 2008; 26(13); 1644-1651. [PubMed: 18289745].
2. Du et al., 2008: Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, He Y, Jiang S, Wu C, Yuen KY, Jin DY, Zhou Y, Zheng BJ. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. Journal of immunology (Baltimore, Md. : 1950). 2008; 180(2); 948-956. [PubMed: 18178835].
3. Escriou et al., 2014: Escriou N, Callendret B, Lorin V, Combredet C, Marianneau P, Février M, Tangy F. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology. 2014; 452-453; 32-41. [PubMed: 24606680].
4. Hu et al., 2007: Hu H, Lu X, Tao L, Bai B, Zhang Z, Chen Y, Zheng F, Chen J, Chen Z, Wang H. Induction of specific immune responses by severe acute respiratory syndrome coronavirus spike DNA vaccine with or without interleukin-2 immunization using different vaccination routes in mice. Clinical and vaccine immunology : CVI. 2007; 14(7); 894-901. [PubMed: 17494640].
5. Lamirande et al., 2008: Lamirande EW, DeDiego ML, Roberts A, Jackson JP, Alvarez E, Sheahan T, Shieh WJ, Zaki SR, Baric R, Enjuanes L, Subbarao K. A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters. Journal of virology. 2008; 82(15); 7721-7724. [PubMed: 18463152].
6. Sheets et al., 2006: Sheets RL, Stein J, Manetz TS, Duffy C, Nason M, Andrews C, Kong WP, Nabel GJ, Gomez PL. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicological sciences : an official journal of the Society of Toxicology. 2006; 91(2); 610-619. [PubMed: 16569729].
7. Sims et al., 2008: Sims AC, Burkett SE, Yount B, Pickles RJ. SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Virus research. 2008; 133(1); 33-44. [PubMed: 17451829].
8. Wiki: SARS: Wiki: Sever Acute Respiratory Syndrome [http://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome]
9. Zheng et al., 2008: Zheng BJ, Du LY, Zhao GY, Lin YP, Sui HY, Chan C, Ma S, Guan Y, Yuen KY. Studies of SARS virus vaccines. Hong Kong medical journal = Xianggang yi xue za zhi / Hong Kong Academy of Medicine. 2008; 14 Suppl 4; 39-43. [PubMed: 18708674].