VIOLIN Logo
VO Banner
Search: for Help
About
Introduction
Statistics
VIOLIN News
Your VIOLIN
Register or Login
Submission
Tutorial
Vaccine & Components
Vaxquery
Vaxgen
VBLAST
Protegen
VirmugenDB
DNAVaxDB
CanVaxKB
Vaxjo
Vaxvec
Vevax
Huvax
Vaccine Mechanisms
Vaximmutordb
Vaxism
Vaxar
Vaccine Literature
VO-SciMiner
Litesearch
Vaxmesh
Vaxlert
Vaccine Design
Vaxign
Community Efforts
Vaccine Ontology
ICoVax 2012
ICoVax 2013
Advisory Committee
Vaccine Society
Vaxperts
VaxPub
VaxCom
VaxLaw
VaxMedia
VaxMeet
VaxFund
VaxCareer
Data Exchange
V-Utilities
VIOLINML
Help & Documents
Publications
Documents
FAQs
Links
Acknowledgements
Disclaimer
Contact Us
UMMS Logo

Escherichia coli

Table of Contents
  1. General Information
    1. NCBI Taxonomy ID
    2. Disease
    3. Introduction
    4. Microbial Pathogenesis
    5. Host Ranges and Animal Models
    6. Host Protective Immunity
  2. Vaccine Related Pathogen Genes
    1. StxB1
    2. Efa-1
    3. FaeG
    4. Sph
    5. C0393 (Protective antigen)
    6. C3389 (Protective antigen)
    7. C4424 (Protective antigen)
    8. CS1 (Protective antigen)
    9. Eae (Protective antigen)
    10. ECSE_P3-0034 (Protective antigen)
    11. EltB (Protective antigen)
    12. FimH from E. coli str. K-12 substr. MG1655 (Protective antigen)
    13. FimH from E. coli UTI89 (Protective antigen)
    14. FyuA (Protective antigen)
    15. Hma (Protective antigen)
    16. IreA (Protective antigen)
    17. IroN (Protective antigen)
    18. Iss (Protective antigen)
    19. IutA (Protective antigen)
    20. StxB2 (Protective antigen)
    21. Tir (Protective antigen)
    22. carA (Virmugen)
    23. carB (Virmugen)
    24. ler (Virmugen)
    25. rfaL (Virmugen)
  3. Vaccine Related Host Genes
    1. Ifng (Interferon gamma)
    2. IL-17
    3. IL-6
    4. K88AB
  4. Vaccine Information
    1. APEC vaccine using GST-Iss fusion protein
    2. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Clostridium Perfringens Type C-Escherichia Coli Bacterin-Toxoid (USDA: 4570.20)
    3. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Clostridium Perfringens Type C-Escherichia Coli Bacterin-Toxoid (USDA: 4570.22)
    4. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Clostridium Perfringens Types C & D-Escherichia Coli Bacterin-Toxoid (USDA: 4575.20)
    5. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Escherichia Coli Bacterin (USDA: 4585.20)
    6. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Escherichia Coli Bacterin (USDA: 4585.22)
    7. CVD 103-HgR- REPEC
    8. Dukoral
    9. E. coli C3389 protein vaccine
    10. E. coli C4424 protein vaccine
    11. E. coli CS3 in PLGA microspheres
    12. E. coli FimH with CFA and then IFA
    13. E. coli heat-labile enterotoxin B-subunit (LB-T) Vaccine
    14. E. coli Hma protein vaccine
    15. E. coli IreA protein vaccine
    16. E. coli IutA protein vaccine
    17. E. coli O157:H7 intimin vaccine
    18. E. coli O157:H7 subunit vaccine expressing Esps and Tir
    19. E. coli vaccine based on recombinant protein CO393
    20. E. coli vaccine based on recombinant protein FyuA
    21. E. coli vaccine using intimin polypeptide
    22. E. coli vaccine using verocytotoxin toxoid
    23. E.coli vaccine based on recombinant protein IroN
    24. EHEC O157 subunit vaccine using his-tagged N-terminal intimin
    25. Escherichia Coli Avirulent Live Culture Vaccine (USDA: 1551.02)
    26. Escherichia Coli Avirulent Live Culture Vaccine (USDA: 15R1.00)
    27. Escherichia coli carAB mutant vaccine
    28. Escherichia coli ler mutant vaccine
    29. Escherichia Coli Live Culture Vaccine (USDA: 1551.R0)
    30. Escherichia coli rfaL mutant vaccine
    31. inactivated ETEC expressing expressing CFA/I and CFA/II
    32. KLH-s-FimH1-25 with CFA and then IFA
    33. Live attenuated ETEC vaccine ACAM2007
    34. Live attenuated ETEC vaccine ACAM2010
    35. Live attenuated ETEC vaccine ACAM2017
    36. Porcine Rotavirus Modified Live Virus Vaccine-Clostridium Perfringens Type C-Escherichia Coli Bacterin-Toxoid (USDA: 49C1.21)
    37. Porcine Rotavirus Modified Live Virus Vaccine-Escherichia Coli Bacterin (USDA: 49K1.20)
    38. Porcine Rotavirus-Transmissible Gastroenteritis Modified Live Virus Vaccine-Bordetella Bronchiseptica-Clostridium Perfringens Type C-Erysipelothrix Rhusiopathiae-Escherichia Coli-Pasteurella Multocida Bacterin-Toxoid (USDA: 49T9.21)
    39. Porcine Rotavirus-Transmissible Gastroenteritis Modified Live Virus Vaccine-Clostridium Perfringens Type C-Escherichia Coli Bacterin-Toxoid (USDA: 49B1.21)
    40. Porcine Rotavirus-Transmissible Gastroenteritis Modified Live Virus Vaccine-Escherichia Coli Bacterin (USDA: 49P1.20)
    41. rBCG -Stx2B (Escherichia coli )
    42. Recombinant Tir Protein Vaccine
    43. Shiga Toxin 2 B Subunit Vaccine
    44. soybean-expressed E. coli LTB vaccine
  5. References
I. General Information
1. NCBI Taxonomy ID:
83334
2. Disease:
Hemorrhagic colitis
3. Introduction
The microorganisms which inhabit the intestinal tract as normal flora are named enteric bacteria. E. coli belongs to the Family Enterobacteriaceae (from the Greek word enterikos, which pertains to the intestine). The name Escherichia comes from the name, Escherich, who in 1885 first isolated and characterized this bacterium. E. coli is a normal, Gram-negative inhabitant of the intestines of all animals, including humans (Horne et al., 2002). When aerobic culture methods are used, E. coli is the dominant species found in feces. Normally E. coli serves a useful function in the body by suppressing the growth of harmful bacterial species and by synthesizing appreciable amounts of vitamins. A minority of E. coli strains are capable of causing human illness by several different mechanisms. E. coli serotype O157:H7 is a rare variety of E. coli that produces large quantities of one or more related, potent toxins that cause severe damage to the lining of the intestine.

Two main types of E. coli are a direct health threat to humans: enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Both are diarrheagenic pathotypes. EPEC colonizes the small intestine, and EHEC colonizes the large intestine. EPEC is spread through the fecal-oral route, from human to human without intermediate animal hosts. It is a major cause of infant morbidity in developed countries, estimated to cause the deaths of several hundred thousand children each year. EHEC is a zoonotic pathogen that can progress to hemolytic uremic syndrome (HUS) that can result in kidney failure as well as neurological complications. These severe complications of HUS can be attributed to the production of Shiga toxin, like those produced by E. coli serotype O157:H7 (Horne et al., 2002). Uropathogenic strains of Escherichia coli (UPEC) are the most common cause of non-hospital-acquired urinary tract infections, responsible for 70-90% of the 7 million cases of acute cystitis and 250,000 cases of pyelonephritis reported annually in the United States. Uncomplicated urinary tract infection (UTI) caused by UPEC represents a prevalent and potentially severe infectious disease (Hagan and Mobley, 2007).

The recognition of EHEC as a pathogenic E. coli resulted from two key epidemiologic observations. The first was the 1983 report by Riley et al. who investigated two outbreaks of a distinctive gastrointestinal illness characterized by severe crampy abdominal pain, watery diarrhea followed by grossly bloody diarrhea, and little or no fever. This illness, designated hemorrhagic colitis (HC), was associated with the ingestion of undercooked hamburgers at a fast-food restaurant chain (Pathport).
4. Microbial Pathogenesis
E. coli O157:H7 can be transmitted by food and water. Infection by E. coli O157:H7 is most commonly caused by the consumption of undercooked, contaminated ground beef or beef products, also caused by contaminated drinking or recreational water, raw milk, and person to person contact. The infection mechanisms by which E. coli O157:H7 causes haemorrhagic colitis and HUS are not fully understood. E. coli O157:H7 is believed to adhere closely to mucosal cells of the large bowel, disrupting the brush border. This adherence is completed through the utilization of a Type IV fimbriae bundle-forming pilus between the E. coli and the intestinal epithelial cells.The adherence can progress to a more intimate attatchment resulting in the formation of A/E lesions (Horne et al., 2002). This process alone may be sufficient to produce non-bloody diarrhoea. Shiga toxins have both local and systemic effects on the intestine and are probably critical to the development of bloody diarrhoea. Shiga toxin (Stx) binds to globotriaoxylceramide receptors (Gb3) on cells in the vascular system and in the kidneys. Interaction with the Gb3 receptor leads to internalization of the toxin, which results in the inhibition of protein synthesis (Horne et al., 2002). Histopathological changes associated with infection include haemorrhage and oedema in the lamina propria with areas of superficial focal necrosis. Beef products still account for most of the E. coli O157:H7 cases; however, other food like salad vegetables, fruits, alfalfa and radish sprouts, unpasteurized apple cider, mayonnaise, yogurt, and salami have also been implicated in recent major outbreaks (Pathport).
5. Host Ranges and Animal Models
Direct links between E. coli O157:H7 in cattle and human infections have been confirmed by bacterial isolation and by the presence of serum antibodies against O157 and Shiga-toxin (Stx) antigens in dairy farm families and their cattle. Cattle are believed to be a major conduit for the passage of E. coli O157:H7 into the food supply, but other animals also shed this microorganism in their feces (Pathport). For this reason, neonatal calves are often used as an animal model in testing EHEC vaccines, as well as gnotobiotic piglets. However, since EPEC is host specific and dpes not induce diarrhea in animals, the pathology of the infection is imitated in animal hosts through the use of specially-adapted veterinary pathogens, such as REPEC (rabbit enteropathogenic E. coli) and RDEC (rabbit diarrheal E. coli). Both of these strains elicit the A/E lesions needed to study the vaccine (Horne et al., 2002).
6. Host Protective Immunity
Possible future treatments for E. coli O157:H7 infection include orally administered shiga toxin-binding resins and toxin-neutralising antibodies. Natural infection with E. coli O157:H7 does not confer immunity, and no human vaccine is currently available (Pathport). Major advances in the production of the vaccine can be made once a better understanding of mucosal immunology is complete. DNA-based vaccination is also a possibility to develope protective immunity against EHEC and EPEC. Construction of these vaccines expressing multiple virulence genes of the pathogen could be effective in producing long-term immune response (Horne et al., 2002).
1. C0393
  • Gene Name : C0393
  • Sequence Strain (Species/Organism) : Escherichia coli CFT073
  • VO ID : VO_0010989
  • NCBI Gene ID : 1034958
  • NCBI Protein GI : 26246291
  • Locus Tag : c0393
  • Genbank Accession : AE014075
  • Protein Accession : NP_752330
  • Taxonomy ID : 199310
  • Gene Starting Position : 371876
  • Gene Ending Position : 376006
  • Gene Strand (Orientation) : -
  • Protein Name : haemoglobin protease
  • Protein pI : 5.92
  • Protein Weight : 138492.32
  • Protein Length : 1376
  • Protein Note : Residues 1 to 1376 of 1376 are 79.04 pct identical to residues 1 to 1377 of 1377 from GenPept.129 : >emb|CAA11507.1| (AJ223631) haemoglobin protease [Escherichia coli]
  • DNA Sequence : Show Sequence
    >gi|26245917:371876-376006 Escherichia coli CFT073, complete genome
    ATCAGAATGAATAACGAATATTAGCGTTTATCGCATCATCTGTGTTGTATTTACCGAATGCAGAGCGTTC
    AACTTCCAGCCCCAGACGCGTATTGTCGCCAAACCGGGCATTTAACCCCACACCGTAAAGCATACGACCG
    TCTTTTCTGCCATTAATCTGATGTTCTCCCGCTGCATCCTTCAGGTGAACGTCAGCACTGTCCGTCAGAT
    CGAACTCATAATGCAGGCCGGCACGGGCTGTCAGACTCCAGTCCTTACCACTGAAGGTTTTACCGGAAAC
    AACGCCGGTTCTGCCTACCAGAGGATTAACGCTGTTACGACGCATTGAGACATCCATTCCACTGTCGTTC
    CAGTTAAATGTTTGGCCCTGCAGTCTTCCCCAGACCAGTTCCGCCTGAGGTTCAACAAACGTCGTATCTG
    TCAGATGATAACGGTATCCGACTTCTGCACCTGCATACAGTGAATGGCTGCGGAAGTTCTGTTTACCAGC
    TCCGGCAAAGTTCAGGTCATATTTGTTTTCATTGTGAATATATTTGGCAATCAAATCAAAGTAAGCGCCG
    GACCGGAACAGACCACTGGCATAGAAACCACCACCCCATGATTTTGTTTTACCGCTGTACAGGCCTGCTG
    ACGCATCTGTGTCAGTGTAGGTGGCCATCACGCCGGTAAACAGGTCCATACTTCCCAGTTCGTGCTTACG
    GTCAGCCCCCATCTGCAGCAGGGTATAGTGGTCAGTGAAACCGCCATCAGCAGAGCCGGAACCGTTCAGC
    AGACGCACCCACGTACCGGCTTCGCCGTTAATATCCCTCAAATCGCCCATGCGTTTGTTCAGGTTGTTAA
    CTTCAGTGATGAAGTTGTTATAGCTGATGTGCATGAATGTGGCGGCAGCCTTACCCTGGCCGTCGTTACG
    TGCAACCTGGTAACCATCGAGGACCCACTCTTTTTTCCCGTCCTCTTTTCTGACACTAAGGGTGGGGGTG
    ACATCACTGAATCCCACAACCCGTGTTGATGCCCTGAACAGATTATCAGCTGTCGCTTCAGGTGCGCTGA
    CCAGTGGAATATCAAGCGTGTCCTTGTCAGAGGGTTTTTTCAGGAAGTTAACCCAGATGCTGTTGTCATG
    ACCTGTTGCCGACTTGTTTATCACCAGTTTGTCTGCCTTGTTAAGGTCTGTACGCATGACAAATGCTGAC
    TGAACCGCGTCCAGATTATCTGTTGTCAGTGTCGTGAACGATGATGTTCCCCCGTTAAAACCGACTATTG
    TCCGGTTAAGTTTCATATTTCCTGCCGTGGAGTTTCCGTTCATCGACCACTGGGTGTCTGTCATGCTGAC
    GGTGGCATCCGGTGCATTCAGGCTCCCGCTCCAGGTATTGCGGTACCCGTTAAACAGGCTGTACAACATC
    TGATTCTGAAGAGTCAGGTCAGGACTCAGTTCCCCTTCCCCTCCGAGGGTGACAGTCCCTTTATCCTGAA
    CATTGATATTACCTGACAACATACTGTACGGCCCCACGTTCAGGCGGGCATCGTCTCCCTTCAGGTTCCA
    TGAACCGGCATAATCGTATACAGGTAAAAGTGTGTGAGATACCTCATCAGGACGGCTGTTCAGACTCAGG
    GTGGCATCAGAAATATTCACCGGACCGTCAGAAACAAAACTCTGACTGGCCAGAACATTTGCTCCCTTGT
    TCAGATTCAGGGCGGTACTGGTCAGCGTTGAGTTCTCCAGAACGGCACTGTCTGAGGAGATATTCACGGT
    ACTGTTGTTCGCCTGTATTCCGCCATTGAATATCTCATTGATATTCAGCACTGACTGATTATCCAGGTTG
    ACGGTGCCGTTGAAGACGCTTTTATCTGCATCTTTAGTTGCAACAGATGTGCCTTCTTCAAGGGTAAATG
    CTGTTCCCTGGCCATCTTTTTTGTCGATAAATACCCGACTGTCGCCCAGCGTGACGCTGGAGTTATCTGC
    CTGGATGGTTGTGTTCAGTGTGGCATTGCGGCCCAGACCAAAGTCTGTATCTTTTAACACGAGCGAACCA
    AAGCTGAACGTCCTGTTCTCCCAGTCATCCTGTGTAAATGAGGTGGGCTGTGTCAGAACGGAATTGTCGC
    CCAGAGACGAGACTGTATTTGCAATACTCTGAGACGTTGAAGCATGGATAACCGGGTGGCCCTGAATGGT
    CAGACGACCGTTTTCCTGAGTAAATGTACCGGACATATTCGCTGAGCCGTCCATAACCAATGCGCCGGTT
    GTACCCGGGGTTGCTTTATTTGAGAAATTAATATTTCCCAGCAACTTGCCATGATACAGATACCCTTTAT
    TATTAATTCTGTTTGCAAGCAGTGCCTGTGCACTGTTCTGGTCATGTCCGACATATTCCCAGTGCTCGTT
    ACTGACCTGACCGGTAGGGAACCAGCCATAACTACTTGTTTTCAGGATAAAATAATCGACGGTATGAGTA
    TAGGGATTATTATAAATATATAATGAACCTACTGTTCCCCTGTTTGATGATGACCATTCATTAACTTTTA
    CGTCTGCCGGACGCGTCTGATAATCCAGAGTGATATTAGCCGTTTTATCACTGCTGTTACCGAGAGTTGC
    GCCATAATCGGCGGCATTCAGCTTATGAAATGTCAGGTCATTCCCGTTAACATCCAGAACCCCCCCCCGG
    TAGCCCCAGGATATATTGTCCGGATTAACCTGCTGGTTGTCTGCCAGCACGACTGTCGGGCGGCCGCTGG
    CAATATTCACGCTACTGAATGCCTGAACGTGTCCTGAACTGTCAGCCTGCTGATTGAGGACAACGGTCCC
    ATCCCCGACTTTCAGGCCGCCCTCATTAACACCGGTTCCCTGTACAACCAGGGTTCCTTCGCCGATTTTA
    TGCAGGTTGTCACCTTTCACACCATTAACCTGCCAGTTTACGGAGGCATCCTTGTCCACAATAATACCGG
    CCCCGGTCCAGGTACTTCCGTTTGAAGTGGTGACAGTGTAGTCATCAGTAAATGTCAGTGAACCGGCACC
    CTGCGTGACAGAGTTTTCCAGGTCAATCTGACCATTATGTCCCAGGAATGTCAGATTTTTACCTGCGTTC
    AGGTCAGAACCTTTTTGCCCGTGCATGGCATATTCATCGGAACCCTGTTTCAGAGAGCCAGTGCCGGTGC
    TGCTGTCAAATTTCCATTGCAGGGGGGCGCCGGATGAGGCATTAAAAAAGACGGGAGCGTCATTATCCTC
    TGAATAGATCTGTGAGAGAAAACTCTGAGGAATAAGAGAATATATCAAATTGGTCCCCCCTCCTACTCCC
    GAGTAAACACCGACCAGTTCCCACTGCCCTTTGGCCGTATTCCAGCCAAATAATGGAGAACCACTGTCGC
    CGGCCTCTCCAAAAGAGGGCAGGATGCTATGATCATGTATGTTGCCCCCCATATACAGCTGAATGCCGTC
    TGAGCCGTGATAAAAGAATGATGTCGGGAGTATTCCTCCTGTCAGATAACCATACCCACCTGTTACCCAA
    TGTCGCTTACCCTGACTATCCTGAATATACTGACTTCCCGAACCAGCCCTGTAGAATGCCGAGTATTTTG
    AAGGGTTCAATATATCAGCTGTTGATGAGCTGGTTACGGTAGCCGGAGCAACCTCAGTTACGAGCTTATC
    AAGTCTTGGTGTGTGGAGATCAGATGAACTGTGTTCATTACGATCCACAATATGGTAACTGTTCTGACCA
    TCACCGAAGCTGACGCTCTGATATCCTTTATTATGTTTTACACTGGCTATATATTGCGGGTTAATTAATG
    TTGCAACGCCGGGATTTGAGCTTACATTCACACTGCTAAAATCAACCATGGGCGCTTTATCAAGATGTCC
    TACTAATTCCCCTTTATTATTAAAAATAGGAATGTTTGTTGCGCCAGCCTGAAACTGCCCTTTGTTTTCT
    GCAAAGTCGCGGTATGTCTGGTAAGGATTGTTGCCACCAACCGTTGATGCACCAGCAACGGTTGGGAGTA
    ATGCAGATAGTGCCAGAGAGGTAAGTACTGAAAGTCTTTTTCCTCTGCGGGTACTCCCTTTACATACCCT
    TCGGGCTAGTTCAGAGACAACCTTTACTGTGTTAGTAATATAACAATATTTTAGAGCGTATATTTTATTC
    A
  • Protein Sequence : Show Sequence
    >gi|26246291|ref|NP_752330.1| haemoglobin protease [Escherichia coli CFT073]
    MNKIYALKYCYITNTVKVVSELARRVCKGSTRRGKRLSVLTSLALSALLPTVAGASTVGGNNPYQTYRDF
    AENKGQFQAGATNIPIFNNKGELVGHLDKAPMVDFSSVNVSSNPGVATLINPQYIASVKHNKGYQSVSFG
    DGQNSYHIVDRNEHSSSDLHTPRLDKLVTEVAPATVTSSSTADILNPSKYSAFYRAGSGSQYIQDSQGKR
    HWVTGGYGYLTGGILPTSFFYHGSDGIQLYMGGNIHDHSILPSFGEAGDSGSPLFGWNTAKGQWELVGVY
    SGVGGGTNLIYSLIPQSFLSQIYSEDNDAPVFFNASSGAPLQWKFDSSTGTGSLKQGSDEYAMHGQKGSD
    LNAGKNLTFLGHNGQIDLENSVTQGAGSLTFTDDYTVTTSNGSTWTGAGIIVDKDASVNWQVNGVKGDNL
    HKIGEGTLVVQGTGVNEGGLKVGDGTVVLNQQADSSGHVQAFSSVNIASGRPTVVLADNQQVNPDNISWG
    YRGGVLDVNGNDLTFHKLNAADYGATLGNSSDKTANITLDYQTRPADVKVNEWSSSNRGTVGSLYIYNNP
    YTHTVDYFILKTSSYGWFPTGQVSNEHWEYVGHDQNSAQALLANRINNKGYLYHGKLLGNINFSNKATPG
    TTGALVMDGSANMSGTFTQENGRLTIQGHPVIHASTSQSIANTVSSLGDNSVLTQPTSFTQDDWENRTFS
    FGSLVLKDTDFGLGRNATLNTTIQADNSSVTLGDSRVFIDKKDGQGTAFTLEEGTSVATKDADKSVFNGT
    VNLDNQSVLNINEIFNGGIQANNSTVNISSDSAVLENSTLTSTALNLNKGANVLASQSFVSDGPVNISDA
    TLSLNSRPDEVSHTLLPVYDYAGSWNLKGDDARLNVGPYSMLSGNINVQDKGTVTLGGEGELSPDLTLQN
    QMLYSLFNGYRNTWSGSLNAPDATVSMTDTQWSMNGNSTAGNMKLNRTIVGFNGGTSSFTTLTTDNLDAV
    QSAFVMRTDLNKADKLVINKSATGHDNSIWVNFLKKPSDKDTLDIPLVSAPEATADNLFRASTRVVGFSD
    VTPTLSVRKEDGKKEWVLDGYQVARNDGQGKAAATFMHISYNNFITEVNNLNKRMGDLRDINGEAGTWVR
    LLNGSGSADGGFTDHYTLLQMGADRKHELGSMDLFTGVMATYTDTDASAGLYSGKTKSWGGGFYASGLFR
    SGAYFDLIAKYIHNENKYDLNFAGAGKQNFRSHSLYAGAEVGYRYHLTDTTFVEPQAELVWGRLQGQTFN
    WNDSGMDVSMRRNSVNPLVGRTGVVSGKTFSGKDWSLTARAGLHYEFDLTDSADVHLKDAAGEHQINGRK
    DGRMLYGVGLNARFGDNTRLGLEVERSAFGKYNTDDAINANIRYSF
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : Active immunization of BALB/c mice with C0393 antigen in Freund's adjuvant protects mice from lethal challenge with ExPEC strain S26 (Durant et al., 2007).
  • Related Vaccine(s): E. coli vaccine based on recombinant protein CO393
2. C3389
  • Gene Name : C3389
  • Sequence Strain (Species/Organism) : Escherichia coli CFT073
  • VO ID : VO_0010991
  • NCBI Gene ID : 1039252
  • NCBI Protein GI : 26249224
  • Locus Tag : c3389
  • Genbank Accession : AE014075
  • Protein Accession : NP_755264
  • Taxonomy ID : 199310
  • Gene Starting Position : 3227151
  • Gene Ending Position : 3228803
  • Gene Strand (Orientation) : +
  • Protein Name : hypothetical protein
  • Protein pI : 8.88
  • Protein Weight : 55391.31
  • Protein Length : 550
  • Protein Note : Residues 6 to 550 of 550 are 41.51 pct identical to residues 6 to 562 of 578 from GenPept.129 : >emb|CAC90294.1| (AJ414148) putative exported protein [Yersinia pestis]
  • DNA Sequence : Show Sequence
    >gi|26245917:3227151-3228803 Escherichia coli CFT073, complete genome
    AGTGAGGAACACGCTGAAACAGGCCATCGTGCTGTGGGGAATGGTGTTACTGCTGGTGCTGTGGTCAGTG
    TTTATCAGTCCGTCTGGCGTGCTGAGATGGGCCGGTGCGGCGGCTATCGTTCTGGCGGTTGCCGCGTTGT
    TGATTTATCGGCGCAGGCAGGCGTGGACGGAGATGACCGGCGATGCCGGGTTGTCATCGCTGCCGCCGGA
    AACCTACCGACAGCCGGTAGTGCTGGTCTGTGGCGGTCTGTCGGCGCACCTGTCCACTGACAGCCCGGTC
    CGCCAGGTTTCAGAAGGGCTGTATCTGCATGTTCCTGATGAAGAACAGCTTGTGGCGCAGGTGGAGCGAT
    TGCTGACCCTTCGCCCGGCGTGGGCATCGCAGCTTGCCGTGGCGTATACCATCATGCCCGGCATACACCG
    GGATGTGGCGGTTCTGGCCGGACGGCTGCGACGGTTCGCCCACAGTATGGCGACGGTGCGTCGTCGGGCA
    GGCGTAAACGTCCCCTGGCTTCTCTGGAGCGGGCTGTCCGGCTCGCCGTTGCCGGAAAGAGCGAGTTCAC
    CGTGGTTTATCTGTACCGGCGGCGAAGTTCAGGTAGCAACATCCACAGAGACCACCATGCCCGCGCAGTG
    GATTGCACAATCCGGCGTACAGGAGCGCAGTCAGCGACTCTGTTACCTGCTGAAAGCTGAAAGCCTGATG
    CAGTGGCTGAATCTTAATGTGCTGACGGCACTGAACGGCCCGGAGGCGAAATGTCCACCACTGGCGATGA
    CCGTGGGGCTGGTCCCCTCGTTGCCTGCGGTGGATAACAACCTGTGGCAGTTGTGGATCACCGCCAGAAC
    CGGCCTGACGCCGGATATCGCGGACACCGGCACAGACGATGCGCTGCCATTCCCGGATGCCCTGTTACGG
    CAGTTGCCGCGTCAGTCGGGCTTTACCCCGCTGCGACGAGCCTGCGTGACCATGCTGGGCGTCACCACCG
    TGGCGGGTATCGCCGCGCTGTGCCTGTCAGCCACGGCAAATCGCCAGTTATTACGGCAGGTCGGTGACGA
    TCTGCACCGGTTTTATGCCGTCCCGGTGGAGGAATTTATCACCAAAGCCCGTCACCTGTCGGTGCTGAAA
    GACGATGCGACCATGCTCGATGGGTATTACCGGGAAGGAGAACCCCTGCGCCTCGGTCTGGGGTTATACC
    CCGGCGAACGCATCCGCCAGCCGGTATTACGCGCCATTCGCGACTGGCGTCCGCCTGAACAAAAAATGGA
    GGTGACGGCTTCGCTTCAGGTTCAGACCGTGCGTCTTGACAGTATGTCGCTGTTTGACGTCGGACAGGCC
    CGCCTGAAAGACGGCTCGACAAAAGTGCTGGTGGACGCACTGGTGAACATCCGGGCAAAACCGGGCTGGC
    TGATCCTCGTGGCCGGATATACCGATGCCACCGGCGATGAAAAAAGCAATCAGCAGTTATCGCTGCGGCG
    TGCCGAAGCGGTGCGCAACTGGATGCTGCAGACCAGCGACATCCCGGCCACCTGTTTTGCCGTACAGGGA
    CTGGGCGAGAGCCAGCCTGCGGCGACCAACGACACGCCACAGGGCCGGGCAGTCAACCGGCGTGTCGAAA
    TCAGTCTTGTTCCGCGTTCTGACGCCTGTCAGGACGTGAAATA
  • Protein Sequence : Show Sequence
    >gi|26249224|ref|NP_755264.1| hypothetical protein c3389 [Escherichia coli CFT073]
    MRNTLKQAIVLWGMVLLLVLWSVFISPSGVLRWAGAAAIVLAVAALLIYRRRQAWTEMTGDAGLSSLPPE
    TYRQPVVLVCGGLSAHLSTDSPVRQVSEGLYLHVPDEEQLVAQVERLLTLRPAWASQLAVAYTIMPGIHR
    DVAVLAGRLRRFAHSMATVRRRAGVNVPWLLWSGLSGSPLPERASSPWFICTGGEVQVATSTETTMPAQW
    IAQSGVQERSQRLCYLLKAESLMQWLNLNVLTALNGPEAKCPPLAMTVGLVPSLPAVDNNLWQLWITART
    GLTPDIADTGTDDALPFPDALLRQLPRQSGFTPLRRACVTMLGVTTVAGIAALCLSATANRQLLRQVGDD
    LHRFYAVPVEEFITKARHLSVLKDDATMLDGYYREGEPLRLGLGLYPGERIRQPVLRAIRDWRPPEQKME
    VTASLQVQTVRLDSMSLFDVGQARLKDGSTKVLVDALVNIRAKPGWLILVAGYTDATGDEKSNQQLSLRR
    AEAVRNWMLQTSDIPATCFAVQGLGESQPAATNDTPQGRAVNRRVEISLVPRSDACQDVK
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : Active immunization of BALB/c mice with recombinant E. coli protein C3389 antigen in Freund's adjuvant protects mice from lethal challenge with ExPEC strain S26 (Durant et al., 2007).
  • Related Vaccine(s): E. coli C3389 protein vaccine
3. C4424
  • Gene Name : C4424
  • Sequence Strain (Species/Organism) : Escherichia coli CFT073
  • VO ID : VO_0010990
  • NCBI Gene ID : 1038067
  • NCBI Protein GI : 26250246
  • Locus Tag : c4424
  • Genbank Accession : AE014075
  • Protein Accession : NP_756286
  • Taxonomy ID : 199310
  • Gene Starting Position : 4205983
  • Gene Ending Position : 4211319
  • Gene Strand (Orientation) : +
  • Protein Name : putative adhesin
  • Protein pI : 4.25
  • Protein Weight : 166959.01
  • Protein Length : 1778
  • Protein Note : Escherichia coli O157:H7 ortholog: z5029
  • DNA Sequence : Show Sequence
    >gi|26245917:4205983-4211319 Escherichia coli CFT073, complete genome
    AATGAACAAAATATTTAAAGTTATCTGGAATCCGGCAACAGGCAGTTACACCGTTGCCAGCGAAACGGCG
    AAGAGCCGTGGTAAAAAAAGCGGGCGCAGTAAGCTGTTAATTTCTGCACTGGTTGCGGGTGGGTTGTTGT
    CGTCGTTTGGGGCAAGTGCAGATAATTACACTGGGCAGCCAACTGATTATGGCGATGGCTCAGCAGGTGA
    CGGCTGGGTTGCTATCGGTAAAGGGGCAAAAGCAAATACCTTTATGAACACTAGTGGCGCGAGTACAGCT
    TTAGGATATGACGCGATAGCCGAAGGTGAGTACAGTTCTGCCATCGGGTCAAAAACCCTTGCAACTGGTG
    GAGCATCCATGGCGTTCGGGGTTAGTGCAAAAGCAATGGGTGACAGAAGTGTCGCGCTAGGTGCATCGTC
    AGTAGCAAATGGCGATCGTTCGATGGCTTTTGGTCGTTACGCAAAGACGAATGGTTTTACATCTCTTGCT
    ATTGGGGACTCCTCCCTTGCCGATGGTGAAAAAACTATTGCGTTAGGAAATACGGCTAAAGCTTACGAAA
    TTATGAGCATCGCCCTCGGTGATAATGCCAATGCGTCAAAAGAGTATGCAATGGCGCTGGGAGCAAGTAG
    CAAAGCTGGCGGTGCTGATAGCCTCGCATTCGGCAGAAAATCTACAGCTAATAGCACTGGCTCACTGGCA
    ATAGGTGCTGACAGTAGCAGTTCGAACGATAACGCCATCGCGATAGGGAACAAAACGCAAGCCCTGGGAG
    TGAATTCGATGGCCCTGGGTAATGCAAGTCAGGCATCTGGCGAATCCAGTATTGCATTAGGTAACACCAG
    TGAAGCCAGCGAACAAAATGCGATTGCGCTGGGGCAAGGTAGCATTGCAAGCAAAGTGAACTCAATCGCG
    TTGGGAAGTAACAGTTTGTCCTCGGGAGAGAATGCCATCGCATTGGGAGAGGGTAGTGCCGCTGGTGGCA
    GCAACAGCCTTGCTTTCGGTAGCCAGTCCAGGGCAAACGGCAATGATTCTGTCGCCATCGGTGTAGGGGC
    TGCAGCAGCGACCGACAATTCTGTCGCTATCGGCGCAGGATCGACCACAGATGCAAGCAATACGGTTTCA
    GTTGGCAACAGCGCAACAAAACGCAAAATTGTTAATATGGCTGCTGGTGCCATAAGCAACACCAGTACCG
    ATGCCATCAACGGCTCACAGCTTTATACGATCAGTGATTCAGTCGCCAAGCGACTCGGAGGAGGCGCTAC
    TGTAGGCAGCGATGGCACCGTAACCGCAGTAAGCTACGCGTTGAGAAGCGGAACCTATAATAACGTGGGT
    GATGCTCTGTCAGGAATCGACAATAATACCCTACAATGGAATAAAACCGCGGGGGCGTTCAGCGCCAATC
    ACGGTGCAAATGCCACCAACAAAATCACTAATGTTGCTAAAGGTACGGTTTCTGCAACCAGCACCGATGT
    AGTAAACGGCTCTCAATTGTACGACCTGCAGCAGGATGCTCTGTTGTGGAACGGCACAGCATTCAGTGCC
    GCACACGGCACCGAAGCCACCAGCAAAATCACTAACGTCACCGCTGGCAACCTGACTGCCGGCAGCACTG
    ACGCCGTTAACGGCTCTCAGCTCAAAACCACCAACGACAACGTGACGACCAACACCACCAACATCGCCAC
    TAACACCACCAATATCACCAACCTGACTGACGCTGTTAACGGTCTCGGTGACGACTCCCTGCTGTGGAAC
    AAAGCAGCTGGCGCATTCAGCGCCGCGCACGGCACCGAAGCCACCAGCAAAATCACCAACGTCACCGCTG
    GCAACCTGACTGCCGGTAGCACTGACGCCGTTAACGGCTCCCAGCTCAAAACCACCAACGACAACGTGAC
    GACCAACACCACCAACATCGCCACTAACACCACCAATATCACCAACCTGACTGACGCTGTTAACGGTCTC
    GGTGACGACTCCCTGCTGTGGAACAAAACAGCTGGCGCATTCAGCGCCGCGCACGGCACTGACGCCACCA
    GCAAGATCACCAACGTCACCGCTGGCAACCTGACTGCCGGCAGCACTGACGCCGTTAACGGCTCCCAGCT
    CAAAACCACCAACGACAACGTGACGACCAACACCACCAACATCGCCACTAACACCACCAATATCACCAAC
    CTGACTGACGCTGTTAACGGTCTCGGTGACGACTCCCTGCTGTGGAACAAAACAGCTGGCGCATTCAGCG
    CCGCGCACGGCACTGACGCCACCAGCAAGATCACCAATGTCAAAGCCGGTGACCTGACAGCTGGCAGCAC
    TGACGCCGTTAACGGCTCTCAGCTCAAAACCACCAACGATAACGTGTCGACCAACACCACCAACATCACC
    AACCTGACTGACGCTGTTAACGGTCTCGGTGACGACTCCCTGCTGTGGAACAAAACAGCTGGCGCATTCA
    GCGCCGCTCACGGCACTGACGCCACCAGCAAGATCACCAATGTCAAAGCCGGTGACCTGACAGCTGGCAG
    CACTGACGCCGTTAACGGCTCCCAGCTCAAAACCACCAACGATAACGTGTCGACCAACACCACCAACATC
    ACTAACCTGACGGATTCCGTTGGCGACCTTAAGGACGATTCTCTGCTGTGGAACAAAGCGGCTGGCGCAT
    TCAGCGCCGCGCACGGTACCGAAGCTACCAGCAAGATCACCAACTTACTGGCTGGCAAGATATCTTCTAA
    CAGCACTGATGCCATTAATGGCTCACAACTTTATGGCGTAGCGGATTCATTTACGTCATATCTTGGTGGT
    GGTGCTGATATCAGCGATACGGGTGTATTAAGTGGGCCAACCTACACTATTGGTGGTACTGACTACACTA
    ACGTCGGTGATGCTCTGGCAGCCATTAACACATCATTTAGCACATCACTCGGCGACGCCCTACTTTGGGA
    TGCAACCGCAGGCAAATTCAGCGCCAAACACGGCATTAATAATGCTCCCAGTGTAATCACTGATGTTGCA
    AACGGTGCAGTCTCGTCCACCAGCAGCGACGCCATTAACGGTTCACAACTTTATGGTGTTAGTGACTACA
    TTGCCGATGCTCTGGGCGGGAATGCTGTGGTGAACACTGACGGCAGTATCACTACACCAACTTATGCCAT
    CGCTGGCGGCAGTTACAACAACGTCGGTGACGCGCTGGAAGCGATCGATACCACGCTGGATGATGCTCTG
    CTGTGGGATACAACAGCCAATGGCGGTAACGGTGCATTTAGCGCCGCTCACGGGAAAGATAAAACTGCCA
    GTGTAATCACTAACGTCGCTAACGGTGCAGTCTCTGCCACCAGCAACGATGCCATTAATGGCTCACAGCT
    CTATAGCACTAATAAGTACATCGCTGATGCGCTGGGTGGTGATGCAGAAGTCAACGCTGACGGTACTATC
    ACTGCACCGACTTACACCATTGCAAATACCGATTACAACAACGTCGGTGAAGCCCTGGATGCGCTCGATA
    ATAACGCGCTGCTGTGGGATGAAGACGCAGGTGCCTACAACGCCAGCCATGATGGCAATGCCAGCAAAAT
    CACCAACGTTGCGGCTGGTGATCTCTCCACAACCAGTACCGATGCTGTTAACGGTTCCCAGTTAAACGCA
    ACCAATATTCTGGTTACGCAAAATAGCCAAATGATTAACCAGCTTGCTGGTAACACTAGCGAAACCTACA
    TCGAGGAAAACGGTGCGGGTATTAACTATGTACGTACCAACGACAGCGGCTTAGCGTTCAACGATGCCAG
    CGCTTCAGGTATTGGCGCTACAGCTGTAGGTTATAACGCAGTTGCCTCTCATGCCAGCAGTGTAGCCATC
    GGTCAGGACAGCATCAGCGAAGTTGATACGGGTATCGCTCTGGGTAGCAGTTCCGTTTCCAGCCGTGTAA
    TAGTTAAAGGGACTCGTAACACCAGCGTATCGGAAGAAGGTGTTGTGATTGGTTATGACACCACGGATGG
    CGAACTGCTTGGCGCGTTGTCGATTGGTGATGACGGTAAATATCGTCAAATCATCAACGTCGCGGATGGT
    TCTGAAGCCCATGATGCGGTCACTGTTCGCCAGTTGCAAAACGCCATTGGTGCAGTCGCAACCACACCAA
    CCAAATACTATCACGCCAACTCAACGGCTGAAGACTCACTGGCAGTCGGTGAAGACTCGCTGGCAATGGG
    CGCGAAAACCATCGTTAATGGTAATGCGGGTATTGGTATCGGCCTGAACACGCTGGTTCTGGCTGATGCG
    ATCAACGGTATTGCTATCGGTTCTAACGCACGCGCAAATCATGCCGACAGCATTGCAATGGGTAATGGTT
    CTCAGACTACCCGTGGTGCGCAGACCAACTACACTGCCTACAACATGGATGCACCGCAGAACTCTGTGGG
    TGAGTTCTCTGTCGGCAGTGAAGACGGTCAACGTCAGATCACCAACGTCGCAGCAGGTTCGGCGGATACC
    GATGCGGTTAACGTGGGTCAGTTGAAAGTAACGGACGCGCAGGTTTCCCAGAATACCCAGAGCATTACTA
    ACCTGAACACTCAGGTCACTAATCTGGATACTCGCGTGACCAATATCGAAAACGGCATTGGCGATATCGT
    AACCACCGGTAGCACTAAGTACTTCAAGACCAACACCGATGGCGCAGATGCCAACGCGCAGGGTAAAGAC
    AGTGTTGCGATTGGTTCTGGTTCCATTGCTGCCGCTGACAACAGCGTCGCACTGGGCACGGGTTCCGTAG
    CAGACGAAGAAAACACCATCTCTGTGGGTTCTTCTACCAACCAGCGTCGTATCACCAACGTTGCTGCCGG
    TGTTAATGCCACCGATGCGGTTAACGTTTCGCAACTGAAGTCTTCTGAAGCAGGCGGCGTTCGCTACGAC
    ACCAAAGCTGATGGCTCTATCGACTACAGCAACATCACTCTCGGTGGCGGCAATAGCGGTACGACTCGCA
    TCAGCAACGTTTCTGCTGGCGTGAACAACAACGACGCAGTGAACTATGCGCAGTTGAAGCAAAGTGTGCA
    GGAAACGAAGCAATACACCGATCAGCGCATGGTTGAGATGGATAACAAACTGTCCAAAACTGAAAGCAAG
    CTGAGTGGTGGTATCGCTTCTGCAATGGCAATGACCGGTCTGCCGCAGGCTTACACGCCGGGTGCCAGCA
    TGGCCTCTATTGGTGGCGGTACTTACAACGGTGAATCGGCTGTTGCTTTAGGTGTGTCGATGGTGAGCGC
    CAATGGTCGTTGGGTCTACAAATTACAAGGTAGTACCAATAGCCAGGGTGAATACTCCGCCGCACTCGGT
    GCCGGTATTCAGTGGTA
  • Protein Sequence : Show Sequence
    >gi|26250246|ref|NP_756286.1| putative adhesin [Escherichia coli CFT073]
    MNKIFKVIWNPATGSYTVASETAKSRGKKSGRSKLLISALVAGGLLSSFGASADNYTGQPTDYGDGSAGD
    GWVAIGKGAKANTFMNTSGASTALGYDAIAEGEYSSAIGSKTLATGGASMAFGVSAKAMGDRSVALGASS
    VANGDRSMAFGRYAKTNGFTSLAIGDSSLADGEKTIALGNTAKAYEIMSIALGDNANASKEYAMALGASS
    KAGGADSLAFGRKSTANSTGSLAIGADSSSSNDNAIAIGNKTQALGVNSMALGNASQASGESSIALGNTS
    EASEQNAIALGQGSIASKVNSIALGSNSLSSGENAIALGEGSAAGGSNSLAFGSQSRANGNDSVAIGVGA
    AAATDNSVAIGAGSTTDASNTVSVGNSATKRKIVNMAAGAISNTSTDAINGSQLYTISDSVAKRLGGGAT
    VGSDGTVTAVSYALRSGTYNNVGDALSGIDNNTLQWNKTAGAFSANHGANATNKITNVAKGTVSATSTDV
    VNGSQLYDLQQDALLWNGTAFSAAHGTEATSKITNVTAGNLTAGSTDAVNGSQLKTTNDNVTTNTTNIAT
    NTTNITNLTDAVNGLGDDSLLWNKAAGAFSAAHGTEATSKITNVTAGNLTAGSTDAVNGSQLKTTNDNVT
    TNTTNIATNTTNITNLTDAVNGLGDDSLLWNKTAGAFSAAHGTDATSKITNVTAGNLTAGSTDAVNGSQL
    KTTNDNVTTNTTNIATNTTNITNLTDAVNGLGDDSLLWNKTAGAFSAAHGTDATSKITNVKAGDLTAGST
    DAVNGSQLKTTNDNVSTNTTNITNLTDAVNGLGDDSLLWNKTAGAFSAAHGTDATSKITNVKAGDLTAGS
    TDAVNGSQLKTTNDNVSTNTTNITNLTDSVGDLKDDSLLWNKAAGAFSAAHGTEATSKITNLLAGKISSN
    STDAINGSQLYGVADSFTSYLGGGADISDTGVLSGPTYTIGGTDYTNVGDALAAINTSFSTSLGDALLWD
    ATAGKFSAKHGINNAPSVITDVANGAVSSTSSDAINGSQLYGVSDYIADALGGNAVVNTDGSITTPTYAI
    AGGSYNNVGDALEAIDTTLDDALLWDTTANGGNGAFSAAHGKDKTASVITNVANGAVSATSNDAINGSQL
    YSTNKYIADALGGDAEVNADGTITAPTYTIANTDYNNVGEALDALDNNALLWDEDAGAYNASHDGNASKI
    TNVAAGDLSTTSTDAVNGSQLNATNILVTQNSQMINQLAGNTSETYIEENGAGINYVRTNDSGLAFNDAS
    ASGIGATAVGYNAVASHASSVAIGQDSISEVDTGIALGSSSVSSRVIVKGTRNTSVSEEGVVIGYDTTDG
    ELLGALSIGDDGKYRQIINVADGSEAHDAVTVRQLQNAIGAVATTPTKYYHANSTAEDSLAVGEDSLAMG
    AKTIVNGNAGIGIGLNTLVLADAINGIAIGSNARANHADSIAMGNGSQTTRGAQTNYTAYNMDAPQNSVG
    EFSVGSEDGQRQITNVAAGSADTDAVNVGQLKVTDAQVSQNTQSITNLNTQVTNLDTRVTNIENGIGDIV
    TTGSTKYFKTNTDGADANAQGKDSVAIGSGSIAAADNSVALGTGSVADEENTISVGSSTNQRRITNVAAG
    VNATDAVNVSQLKSSEAGGVRYDTKADGSIDYSNITLGGGNSGTTRISNVSAGVNNNDAVNYAQLKQSVQ
    ETKQYTDQRMVEMDNKLSKTESKLSGGIASAMAMTGLPQAYTPGASMASIGGGTYNGESAVALGVSMVSA
    NGRWVYKLQGSTNSQGEYSAALGAGIQW
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : Active immunization of BALB/c mice with C4424 antigen in Freund's adjuvant protects mice from lethal challenge with ExPEC strain S26 (Durant et al., 2007).
  • Related Vaccine(s): E. coli C4424 protein vaccine
4. carA
  • Gene Name : carA
  • Sequence Strain (Species/Organism) : Escherichia coli str. K-12 substr. MG1655
  • NCBI Gene ID : 949025
  • NCBI Protein GI : 16128026
  • Locus Tag : b0032
  • Genbank Accession : U00096
  • Protein Accession : NP_414573
  • 3D structure: PDB ID : 1Q15
  • Taxonomy ID : 511145
  • Gene Starting Position : 29650
  • Gene Ending Position : 30798
  • Gene Strand (Orientation) : +
  • Protein Name : carbamoyl phosphate synthetase small subunit, glutamine amidotransferase
  • Protein pI : 6.34
  • Protein Weight : 39148.3
  • Protein Length : 382
  • Protein Note : Also known as arg; cap; ECK0033; JW0030; pyrA6.3.5.5
  • DNA Sequence : Show Sequence
    >gi|49175990:29650-30798 Escherichia coli str. K-12 substr. MG1655 chromosome, complete genome
    TTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACA
    GGTTCGGCGGTTGGGGAAGTCGTTTTCAATACTTCAATGACCGGTTATCAAGAAATCCTCACTGATCCTT
    CCTATTCTCGTCAAATCGTTACTCTTACTTATCCCCATATTGGCAATGTCGGCACCAATGACGCCGATGA
    AGAATCTTCTCAGGTACATGCACAAGGTCTGGTGATTCGCGACCTGCCGCTGATTGCCAGCAACTTCCGT
    AATACCGAAGACCTCTCTTCTTACCTGAAACGCCATAACATCGTGGCGATTGCCGATATCGATACCCGTA
    AGCTGACGCGTTTACTGCGCGAGAAAGGCGCACAGAATGGCTGCATTATCGCGGGCGATAACCCGGATGC
    GGCGCTGGCGTTAGAAAAAGCCCGCGCGTTCCCAGGTCTGAATGGCATGGATCTGGCAAAAGAAGTGACC
    ACCGCAGAAGCCTATAGCTGGACACAAGGGAGCTGGACGTTGACCGGTGGCCTGCCAGAAGCGAAAAAAG
    AAGACGAGCTGCCGTTCCACGTCGTGGCTTATGATTTTGGTGCCAAGCGCAACATCCTGCGGATGCTGGT
    GGATAGAGGCTGTCGCCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCA
    GACGGCATCTTCCTCTCCAACGGTCCTGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGA
    AATTCCTCGAAACCGATATTCCGGTATTCGGCATCTGTCTCGGTCATCAGCTGCTGGCGCTGGCGAGCGG
    TGCGAAGACTGTCAAAATGAAATTTGGTCACCACGGCGGCAACCATCCGGTTAAAGATGTGGAGAAAAAC
    GTGGTAATGATCACCGCCCAGAACCACGGTTTTGCGGTGGACGAAGCAACATTACCTGCAAACCTGCGTG
    TCACGCATAAATCCCTGTTCGACGGTACGTTACAGGGCATTCATCGCACCGATAAACCGGCATTCAGCTT
    CCAGGGGCACCCTGAAGCCAGCCCTGGTCCACACGACGCCGCGCCGTTGTTCGACCACTTTATCGAGTTA
    ATTGAGCAGTACCGTAAAACCGCTAAGTA
  • Protein Sequence : Show Sequence
    >gi|16128026|ref|NP_414573.1| carbamoyl phosphate synthetase small subunit, glutamine amidotransferase [Escherichia coli str. K-12 substr. MG1655]
    MIKSALLVLEDGTQFHGRAIGATGSAVGEVVFNTSMTGYQEILTDPSYSRQIVTLTYPHIGNVGTNDADE
    ESSQVHAQGLVIRDLPLIASNFRNTEDLSSYLKRHNIVAIADIDTRKLTRLLREKGAQNGCIIAGDNPDA
    ALALEKARAFPGLNGMDLAKEVTTAEAYSWTQGSWTLTGGLPEAKKEDELPFHVVAYDFGAKRNILRMLV
    DRGCRLTIVPAQTSAEDVLKMNPDGIFLSNGPGDPAPCDYAITAIQKFLETDIPVFGICLGHQLLALASG
    AKTVKMKFGHHGGNHPVKDVEKNVVMITAQNHGFAVDEATLPANLRVTHKSLFDGTLQGIHRTDKPAFSF
    QGHPEASPGPHDAAPLFDHFIELIEQYRKTAK
  • Molecule Role : Virmugen
  • Molecule Role Annotation : A carAB mutant is attenuated in turkeys and induces significant protection from challenge with wild type E. coli (Kwaga et al., 1994).
  • Related Vaccine(s): Escherichia coli carAB mutant vaccine
5. carB
  • Gene Name : carB
  • Sequence Strain (Species/Organism) : Escherichia coli str. K-12 substr. MG1655
  • NCBI Gene ID : 944775
  • NCBI Protein GI : 16128027
  • Locus Tag : b0033
  • Genbank Accession : U00096
  • Protein Accession : NP_414574
  • 3D structure: PDB ID : 2A81
  • Taxonomy ID : 511145
  • Gene Starting Position : 30816
  • Gene Ending Position : 34037
  • Gene Strand (Orientation) : +
  • Protein Name : carbamoyl-phosphate synthase large subunit
  • Protein pI : 4.98
  • Protein Weight : 108515.91
  • Protein Length : 1073
  • Protein Note : Also known as cap; ECK0034; JW0031; pyrA6.3.5.5
  • DNA Sequence : Show Sequence
    >gi|49175990:30816-34037 Escherichia coli str. K-12 substr. MG1655 chromosome, complete genome
    CATGCCAAAACGTACAGATATAAAAAGTATCCTGATTCTGGGTGCGGGCCCGATTGTTATCGGTCAGGCG
    TGTGAGTTTGACTACTCTGGCGCGCAAGCGTGTAAAGCCCTGCGTGAAGAGGGTTACCGCGTCATTCTGG
    TGAACTCCAACCCGGCGACCATCATGACCGACCCGGAAATGGCTGATGCAACCTACATCGAGCCGATTCA
    CTGGGAAGTTGTACGCAAGATTATTGAAAAAGAGCGCCCGGACGCGGTGCTGCCAACGATGGGCGGTCAG
    ACGGCGCTGAACTGCGCGCTGGAGCTGGAACGTCAGGGCGTGTTGGAAGAGTTCGGTGTCACCATGATTG
    GTGCCACTGCCGATGCGATTGATAAAGCAGAAGACCGCCGTCGTTTCGACGTAGCGATGAAGAAAATTGG
    TCTGGAAACCGCGCGTTCCGGTATCGCACACACGATGGAAGAAGCGCTGGCGGTTGCCGCTGACGTGGGC
    TTCCCGTGCATTATTCGCCCATCCTTTACCATGGGCGGTAGCGGCGGCGGTATCGCTTATAACCGTGAAG
    AGTTTGAAGAAATTTGCGCCCGCGGTCTGGATCTCTCTCCGACCAAAGAGTTGCTGATTGATGAGTCGCT
    GATCGGCTGGAAAGAGTACGAGATGGAAGTGGTGCGTGATAAAAACGACAACTGCATCATCGTCTGCTCT
    ATCGAAAACTTCGATGCGATGGGCATCCACACCGGTGACTCCATCACTGTCGCGCCAGCCCAAACGCTGA
    CCGACAAAGAATATCAAATCATGCGTAACGCCTCGATGGCGGTGCTGCGTGAAATCGGCGTTGAAACCGG
    TGGTTCCAACGTTCAGTTTGCGGTGAACCCGAAAAACGGTCGTCTGATTGTTATCGAAATGAACCCACGC
    GTGTCCCGTTCTTCGGCGCTGGCGTCGAAAGCGACCGGTTTCCCGATTGCTAAAGTGGCGGCGAAACTGG
    CGGTGGGTTACACCCTCGACGAACTGATGAACGACATCACTGGCGGACGTACTCCGGCCTCCTTCGAGCC
    GTCCATCGACTATGTGGTTACTAAAATTCCTCGCTTCAACTTCGAAAAATTCGCCGGTGCTAACGACCGT
    CTGACCACTCAGATGAAATCGGTTGGCGAAGTGATGGCGATTGGTCGCACGCAGCAGGAATCCCTGCAAA
    AAGCGCTGCGCGGCCTGGAAGTCGGTGCGACTGGATTCGACCCGAAAGTGAGCCTGGATGACCCGGAAGC
    GTTAACCAAAATCCGTCGCGAACTGAAAGACGCAGGCGCAGATCGTATCTGGTACATCGCCGATGCGTTC
    CGTGCGGGCCTGTCTGTGGACGGCGTCTTCAACCTGACCAACATTGACCGCTGGTTCCTGGTACAGATTG
    AAGAGCTGGTGCGTCTGGAAGAGAAAGTGGCGGAAGTGGGCATCACTGGCCTGAACGCTGACTTCCTGCG
    CCAGCTGAAACGCAAAGGCTTTGCCGATGCGCGCTTGGCAAAACTGGCGGGCGTACGCGAAGCGGAAATC
    CGTAAGCTGCGTGACCAGTATGACCTGCACCCGGTTTATAAGCGCGTGGATACCTGTGCGGCAGAGTTCG
    CCACCGACACCGCTTACATGTACTCCACTTATGAAGAAGAGTGCGAAGCGAATCCGTCTACCGACCGTGA
    AAAAATCATGGTGCTTGGCGGCGGCCCGAACCGTATCGGTCAGGGTATCGAATTCGACTACTGTTGCGTA
    CACGCCTCGCTGGCGCTGCGCGAAGACGGTTACGAAACCATTATGGTTAACTGTAACCCGGAAACCGTCT
    CCACCGACTACGACACTTCCGACCGCCTCTACTTCGAGCCGGTAACTCTGGAAGATGTGCTGGAAATCGT
    GCGTATCGAGAAGCCGAAAGGCGTTATCGTCCAGTACGGCGGTCAGACCCCGCTGAAACTGGCGCGCGCG
    CTGGAAGCTGCTGGCGTACCGGTTATCGGCACCAGCCCGGATGCTATCGACCGTGCAGAAGACCGTGAAC
    GCTTCCAGCATGCGGTTGAGCGTCTGAAACTGAAACAACCGGCGAACGCCACCGTTACCGCTATTGAAAT
    GGCGGTAGAGAAGGCGAAAGAGATTGGCTACCCGCTGGTGGTACGTCCGTCTTACGTTCTCGGCGGTCGG
    GCGATGGAAATCGTCTATGACGAAGCTGACCTGCGTCGCTACTTCCAGACGGCGGTCAGCGTGTCTAACG
    ATGCGCCAGTGTTGCTGGACCACTTCCTCGATGACGCGGTAGAAGTTGACGTGGATGCCATCTGCGACGG
    CGAAATGGTGCTGATTGGCGGCATCATGGAGCATATTGAGCAGGCGGGCGTGCACTCCGGTGACTCCGCA
    TGTTCTCTGCCAGCCTACACCTTAAGTCAGGAAATTCAGGATGTGATGCGCCAGCAGGTGCAGAAACTGG
    CCTTCGAATTGCAGGTGCGCGGCCTGATGAACGTGCAGTTTGCGGTGAAAAACAACGAAGTCTACCTGAT
    TGAAGTTAACCCGCGTGCGGCGCGTACCGTTCCGTTCGTCTCCAAAGCCACCGGCGTACCGCTGGCAAAA
    GTGGCGGCGCGCGTGATGGCTGGCAAATCGCTGGCTGAGCAGGGCGTAACCAAAGAAGTTATCCCGCCGT
    ACTACTCGGTGAAAGAAGTGGTGCTGCCGTTCAATAAATTCCCGGGCGTTGACCCGCTGTTAGGGCCAGA
    AATGCGCTCTACCGGGGAAGTCATGGGCGTGGGCCGCACCTTCGCTGAAGCGTTTGCCAAAGCGCAGCTG
    GGCAGCAACTCCACCATGAAGAAACACGGTCGTGCGCTGCTTTCCGTGCGCGAAGGCGATAAAGAACGCG
    TGGTGGACCTGGCGGCAAAACTGCTGAAACAGGGCTTCGAGCTGGATGCGACCCACGGCACGGCGATTGT
    GCTGGGCGAAGCAGGTATCAACCCGCGTCTGGTAAACAAGGTGCATGAAGGCCGTCCGCACATTCAGGAC
    CGTATCAAGAATGGCGAATATACCTACATCATCAACACCACCTCAGGCCGTCGTGCGATTGAAGACTCCC
    GCGTGATTCGTCGCAGTGCGCTGCAATATAAAGTGCATTACGACACCACCCTGAACGGCGGCTTTGCCAC
    CGCGATGGCGCTGAATGCCGATGCGACTGAAAAAGTAATTTCGGTGCAGGAAATGCACGCACAGATCAAA
    TA
  • Protein Sequence : Show Sequence
    >gi|16128027|ref|NP_414574.1| carbamoyl-phosphate synthase large subunit [Escherichia coli str. K-12 substr. MG1655]
    MPKRTDIKSILILGAGPIVIGQACEFDYSGAQACKALREEGYRVILVNSNPATIMTDPEMADATYIEPIH
    WEVVRKIIEKERPDAVLPTMGGQTALNCALELERQGVLEEFGVTMIGATADAIDKAEDRRRFDVAMKKIG
    LETARSGIAHTMEEALAVAADVGFPCIIRPSFTMGGSGGGIAYNREEFEEICARGLDLSPTKELLIDESL
    IGWKEYEMEVVRDKNDNCIIVCSIENFDAMGIHTGDSITVAPAQTLTDKEYQIMRNASMAVLREIGVETG
    GSNVQFAVNPKNGRLIVIEMNPRVSRSSALASKATGFPIAKVAAKLAVGYTLDELMNDITGGRTPASFEP
    SIDYVVTKIPRFNFEKFAGANDRLTTQMKSVGEVMAIGRTQQESLQKALRGLEVGATGFDPKVSLDDPEA
    LTKIRRELKDAGADRIWYIADAFRAGLSVDGVFNLTNIDRWFLVQIEELVRLEEKVAEVGITGLNADFLR
    QLKRKGFADARLAKLAGVREAEIRKLRDQYDLHPVYKRVDTCAAEFATDTAYMYSTYEEECEANPSTDRE
    KIMVLGGGPNRIGQGIEFDYCCVHASLALREDGYETIMVNCNPETVSTDYDTSDRLYFEPVTLEDVLEIV
    RIEKPKGVIVQYGGQTPLKLARALEAAGVPVIGTSPDAIDRAEDRERFQHAVERLKLKQPANATVTAIEM
    AVEKAKEIGYPLVVRPSYVLGGRAMEIVYDEADLRRYFQTAVSVSNDAPVLLDHFLDDAVEVDVDAICDG
    EMVLIGGIMEHIEQAGVHSGDSACSLPAYTLSQEIQDVMRQQVQKLAFELQVRGLMNVQFAVKNNEVYLI
    EVNPRAARTVPFVSKATGVPLAKVAARVMAGKSLAEQGVTKEVIPPYYSVKEVVLPFNKFPGVDPLLGPE
    MRSTGEVMGVGRTFAEAFAKAQLGSNSTMKKHGRALLSVREGDKERVVDLAAKLLKQGFELDATHGTAIV
    LGEAGINPRLVNKVHEGRPHIQDRIKNGEYTYIINTTSGRRAIEDSRVIRRSALQYKVHYDTTLNGGFAT
    AMALNADATEKVISVQEMHAQIK
  • Molecule Role : Virmugen
  • Molecule Role Annotation : A carAB mutant is attenuated in turkeys and induces significant protection from challenge with wild type E. coli (Kwaga et al., 1994).
  • Related Vaccine(s): Escherichia coli carAB mutant vaccine
6. CS1
  • Gene Name : CS1
  • Sequence Strain (Species/Organism) : Escherichia coli 536
  • VO ID : VO_0010941
  • NCBI Gene ID : 4188469
  • NCBI Protein GI : 110643341
  • Locus Tag : ECP_3188
  • Genbank Accession : NC_008253
  • Protein Accession : YP_671071
  • Taxonomy ID : 362663
  • Gene Starting Position : 3361397
  • Gene Ending Position : 3361897
  • Gene Strand (Orientation) : -
  • Protein Name : putative CS1 type fimbrial major subunit
  • Protein pI : 8.86
  • Protein Weight : 15880.12
  • Protein Length : 166
  • Protein Note : CS1 type firmbrial major subunit; CS1 pili; coli surface antigen 1
  • DNA Sequence : Show Sequence
    >gi|4188469|gb|AI378616.1|AI378616 tc72f07.x1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:2070181 3' similar to gb:Z14978_cds1 ACTIN, ALPHA CARDIAC (HUMAN);, mRNA sequence
    GAGTTTTAAAGTGGAGTTAACTTCAGAGAGAGGTGAAGATGATGTCCCGACATTAGAAGGTTTTTCTGTG
    GATGGATCGGGCACCGTCTTCCTCATATTCCTTTTTGGAGACCCACATCTTCTTAAAGGTGTCCAGGGAG
    GCAAGGATGGAGCCCCCAATCCACGTGGAATACAGTCTCTCCTGAGGTGCAGATATCCTGATCTTCACAT
    CTTTTGGAGCTAGTTTCTTCACTTCACTCAGGAGCCTGTCACCAAAACCTTTGAACAGGGTAGAGCCTCC
    TGAGAGGACAATGTTAGAGAAAAGCGTGCGCCGCAGGTCCATGTCTGACTTCTGAATGGCGAACACCAGG
    ACCTCGTGGATGCCTTCACTCTCCTCTCCAATCAAATCTGGCCTGAAGAGCAACTCAGGGGCCCGGAATC
    GGGAAGGACCAATCTCAATGGTGCTGCCATCAGGCAGGTAGTACTGAGCTTTCTCTGTCTCTAGCGTCTC
    ATCCTTTTTGGGGTTTATGGATAGGTAACAGGCTCTTTCTTTTATGGCCTTGANNCATCTCAACTCAGAG
    GATGAGGTGGAGTCGTAGCCCTTCTTACGCANGTAGAGGCGCAAGAAGCGAGAGACGTCCCCGNCCNCGA
    TGTCGATGCGCCATGATGAGTGGGGCATGGCAAAGCCCTCATAGATTGGCACAGGCATGGTGACTTCATN
    CCCAGAAATCAGCACCACCCCTGTGTCCTGCCTNGTACGTAAAGGCTGATACAGCTTGGCATGAGATGAA
    AGAGCCGCCACATGGAGGTCTCCGAGAAACTTCGGCAGTCGGTTTCCGGTTTTTCTGGGT
  • Protein Sequence : Show Sequence
    >gi|110643341|ref|YP_671071.1| putative CS1 type fimbrial major subunit [Escherichia coli 536]
    MKKVFAKSLLVAAMFSVAGSALAVQKDITVTANVDAALDMTQTDNTALPKAVEMQYLPGQGLQSYQLMTK
    IWSNDTTKDVKMQLVSPAQLVQSVDASKIVPLTVTWGGEVIAADAATTFTATKIFASDALTNGSLAKPLM
    FSQATKGVLETGIYRGVVSIYLSQAL
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : ETEC also expresses a range of colonisation factor antigens (CFAs), which allow adherence to the mucosal surface and therefore colonisation of the intestine. Some CFAs are sub-divided into coli surface (CS) antigens (Daley et al., 2007).
  • Related Vaccine(s): EHEC O157 subunit vaccine using his-tagged N-terminal intimin , Live attenuated ETEC vaccine ACAM2017 , Shiga Toxin 2 B Subunit Vaccine
7. Eae
  • Gene Name : Eae
  • Sequence Strain (Species/Organism) : Escherichia coli O157:H7 EDL933
  • VO ID : VO_0010944
  • NCBI Gene ID : 960862
  • NCBI Protein GI : 15804220
  • Locus Tag : Z5110
  • Genbank Accession : NC_002655
  • Protein Accession : NP_290259
  • 3D structure: PDB ID : 1E5U
  • Taxonomy ID : 155864
  • Gene Starting Position : 4665440
  • Gene Ending Position : 4668244
  • Gene Strand (Orientation) : -
  • Protein Name : intimin adherence protein
  • Protein pI : 8.95
  • Protein Weight : 95980.21
  • Protein Length : 934
  • Protein Note : Intimin adherence protein
  • DNA Sequence : Show Sequence
    >gi|960862|gb|D59756.1|D59756 HUM064A04B Clontech human fetal brain polyA+ mRNA (#6535) Homo sapiens cDNA clone GEN-064A04 5', mRNA sequence
    GBGAATATGTGTAAAASTSCTTTTCAGAACTGCATTACTATGAGAAAACATCAAAACTGCTGTAGTTTTC
    CATTTCTACTGTATTTCAGTTGCAACCTATTTTTAATAAACTTTGTATGTATTTAAGTGTATTTGCTATT
    GYTTTTGAAAGTGCTGACAAAGTTTATATTTGTAACATCAGCCTTCCTCGCCCATCTCTTTCCATCTGTC
    TCTTCTTCATTAAACACTTACTGAGTATG
  • Protein Sequence : Show Sequence
    >gi|15804220|ref|NP_290259.1| intimin adherence protein [Escherichia coli O157:H7 EDL933]
    MITHGCYTRTRHKHKLKKTLIMLSAGLGLFFYVNQNSFANGENYFKLGSDSKLLTHDSYQNRLFYTLKTG
    ETVADLSKSQDINLSTIWSLNKHLYSSESEMMKAAPGQQIILPLKKLPFEYSALPLLGSAPLVAAGGVAG
    HTNKLTKMSPDVTKSNMTDDKALNYAAQQAASLGSQLQSRSLNGDYAKDTALGIAGNQASSQLQAWLQHY
    GTAEVNLQSGNNFDGSSLDFLLPFYDSEKMLAFGQVGARYIDSRFTANLGAGQRFFLPANMLGYNVFIDQ
    DFSGDNTRLGIGGEYWRDYFKSSVNGYFRMSGWHESYNKKDYDERPANGFDIRFNGYLPSYPALGAKLIY
    EQYYGDNVALFNSDKLQSNPGAATVGVNYTPIPLVTMGIDYRHGTGNENDLLYSMQFRYQFDKSWSQQIE
    PQYVNELRTLSGSRYDLVQRNNNIILEYKKQDILSLNIPHDINGTEHSTQKIQLIVKSKYGLDRIVWDDS
    ALRSQGGQIQHSGSQSAQDYQAILPAYVQGGSNIYKVTARAYDRNGNSSNNVQLTITVLSNGQVVDQVGV
    TDFTADKTSAKADNADTITYTATVKKNGVAQANVPVSFNIVSGTATLGANSAKTDANGKATVTLKSSTPG
    QVVVSAKTAEMTSALNASAVIFFDQTKASITEIKADKTTAVANGKDAIKYTVKVMKNGQPVNNQSVTFST
    NFGMFNGKSQTQATTGNDGRATITLTSSSAGKATVSATVSDGAEVKATEVTFFDELKIDNKVDIIGNNVR
    GELPNIWLQYGQFKLKASGGDGTYSWYSENTSIATVDASGKVTLNGKGSVVIKATSGDKQTVSYTIKAPS
    YMIKVDKQAYYADAMSICKNLLPSTQTVLSDIYDSWGAANKYSHYSSMNSITAWIKQTSSEQRSGVSSTY
    NLITQNPLPGVNVNTPNVYAVCVE
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : EHEC strains produce intimin, an outer membrane adhesin encoded by the eae gene located in a chromosomal pathogenicity island termed the locus of enterocyte effacement (van et al., 2007).
  • Related Vaccine(s): E. coli vaccine using intimin polypeptide
8. ECSE_P3-0034
  • Gene Name : ECSE_P3-0034
  • Sequence Strain (Species/Organism) : Escherichia coli SE11
  • VO ID : VO_0010993
  • NCBI Gene ID : 7003192
  • NCBI Protein GI : 209921909
  • Locus Tag : ECSE_P3-0034
  • Genbank Accession : AP009243
  • Protein Accession : YP_002295988
  • Taxonomy ID : 409438
  • Plasmid No : pSE11-3
  • Gene Starting Position : 32214
  • Gene Ending Position : 33053
  • Gene Strand (Orientation) : ?
  • Protein Name : fimbrial protein FaeG
  • Protein pI : 4.86
  • Protein Weight : 27093.03
  • Protein Length : 279
  • DNA Sequence : Show Sequence
    >gi|209921875:32214-33053 Escherichia coli SE11 plasmid pSE11-3, complete sequence
    TATGAAAAAGACTCTGATTGCACTGGCGCTGGCTGCCTCTGCTGTATCTGGTATGGCGCATGCCTGGACG
    TCTGGTGACTTCAATGGCACGGTCGATATCGGTGGTAGCATTGATGCAACTAATTATCGCCAGAAATGGG
    AATGGGAAGTTGGTACGGGGCTTAATGGATTTTATAATGCTCTGAGTGAGTTGACAAATAATGATACAAA
    ACTGACTATTACTGTTACTGGTAATAAGCCAATTTTGTTAGGCCGAACCAAAGAAGCATTTGTAACGCCG
    ACAGCAGGTGGCTGGGGTGGCATCCCTCAGATTGCATTTACCGACTATAAAGGAGCACCGGTAGAGCTCA
    AAAACCCTGATGGTGAAACTAATAAAGGTTTAGCATATTTTGTTCTGCCGATGAAAAATGCAGATGGTAC
    TGAAGCGGGTTCCGTGAGAGTGAATGCATCTTATGCTGGGGCTGTGGTTGAAAAGACTTCTGATAGTTCG
    GCTAAATTGTTCTCTGCTTATGCCGGTGAGGTAATTCGCATCTTCAATGGCGGTCTTCCGGTGAATGTTA
    CCCAGTCTGAACTGCAGTCAGGTGTTGCTGCTGCTGATAGAACAGCATTGTTTGGTAGTCTGGGGAAAGC
    TGATTTGGTAGCGCAGTTTCAAGCTGTTATTCCTGGGGCTACTGTGACTGATGGGACGAGCTCAGAACAT
    TGTACAATGAGACTATTGGCCTCAGCTGCCTATGCACTGGGTATTGCAGATGGTCAGACTATTGAGGCAA
    CTTTTAATCAGGCTGTAACTACCAGCACTCAGTGGAGCGCTCCGCTGAACGTAGCAATTACTTATTACTA
  • Protein Sequence : Show Sequence
    >gi|209921909|ref|YP_002295988.1| fimbrial protein FaeG [Escherichia coli SE11]
    MKKTLIALALAASAVSGMAHAWTSGDFNGTVDIGGSIDATNYRQKWEWEVGTGLNGFYNALSELTNNDTK
    LTITVTGNKPILLGRTKEAFVTPTAGGWGGIPQIAFTDYKGAPVELKNPDGETNKGLAYFVLPMKNADGT
    EAGSVRVNASYAGAVVEKTSDSSAKLFSAYAGEVIRIFNGGLPVNVTQSELQSGVAAADRTALFGSLGKA
    DLVAQFQAVIPGATVTDGTSSEHCTMRLLASAAYALGIADGQTIEATFNQAVTTSTQWSAPLNVAITYY
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : Oral immunization of FaeG-expressing L. lactis exhibits a protective response against ETEC infection in mice (Hu et al., 2009).
9. Efa-1
  • Gene Name : Efa-1
  • Sequence Strain (Species/Organism) : Escherichia coli O157:H7
  • NCBI Gene ID : 916316
  • NCBI Protein GI : 15833114
  • Locus Tag : ECs3860
  • Genbank Accession : NC_002695
  • Protein Accession : NP_311887
  • Taxonomy ID : 83334
  • Gene Starting Position : 3867200
  • Gene Ending Position : 3868501
  • Gene Strand (Orientation) : +
  • Protein Name : putative adherence factor
  • Protein pI : 9.67
  • Protein Weight : 48716.83
  • Protein Length : 433
  • Protein Note : probable adherence factor,similar to N-terminal parts of adherence factors e.g. Efa1 (1-433 in 3223 aa) [Escherichia coli O111:H- strain E45035] gi|6013469|gb|AAD49229.2|AF159462_1 percent identity 99 in 433 aa,probably interrupted by frameshift
  • DNA Sequence : Show Sequence
    >gi|916316|gb|H40264.1|H40264 yp59e12.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:191758 3', mRNA sequence
    NATNTATCAATGAAGATTTTTATTCAAGCTTAAAGTAAAAAGTAATTTTAGTTAAGAAAAATGAAGTACC
    AGATAAACTGTAACATATATTTTAACTTAGAAGTATCAAAACAGGAATTTTTTGATTCTCTAAGTGGTGG
    TCTCTGCAAAATGGAGCTTGAAGAAATCTTTTACATACCAATTTGATAAGAGTCTGCTGACCACGATCTG
    TCATTTTCTTTACTATGGGCTTCTGGGAGAATGAATGCTATTTTAAGGCCAAATGTGTTTTTCTTTCTTC
    TCCCCTTTCCCTGACTTTTCCCTTTCTCCCATCCCCGACCACCTACCCCACAATGGGNAGGAATTTTTGA
    CATC
  • Protein Sequence : Show Sequence
    >gi|15833114|ref|NP_311887.1| putative adherence factor [Escherichia coli O157:H7]
    MRLPEKVLFPPVTSGLSGQEKQKKPKSITGFQENYQRNIRPIKTASEARLRFFDKMVSKENSLEDVVSLG
    EMIQKEIYGHEQRTFSPVHHTGNWKSSLLHNALLGLANVYNGLRETEYPNTFNRDGIKSTNSFRDNLLTK
    TRTPRDNFEEGIKHPEHATIPYDNDNESNKLLKAGKIAGNNNELLMEIKKESQSDHQIPLSDKFLKRKKR
    SPVAEDKVQNSLTPENFVQKISLSDELKTKYANEILEIKRIMGEYNLLPDKNSRNGLKLLQKQADLLKII
    MEDTSVTENTFKNIEMAIADIKREYYSHTVDIEKNIHAIWVAGSPPESISDYIKTFLKTYKEFTYYLWVD
    EKAFGAAKFTSVLKQIAFDLACRTIQQNTPQKNIDFINLYNEIRKKYNNNPSGQQEYLNKLRELYATYQK
    ISTPLKHMFNSFF
  • Molecule Role Annotation : Efa-1 is a factor for adherence that influences colonisation of the bovine intestines. Non-O157 EHEC, including serotype O26:H-, contain a full-length copy of efa-1 while EHEC O157:H7 contains a truncated form which is predicted to encode the amino-terminal 433 amino acids of the protein (efa-1) (van et al., 2007).
10. EltB
  • Gene Name : EltB
  • Sequence Strain (Species/Organism) : Escherichia coli
  • VO ID : VO_0010943
  • NCBI Protein GI : 157021162
  • 3D structure: PDB ID : 1PZI
  • Other Database IDs : CDD:144824
  • Taxonomy ID : 562
  • Gene Strand (Orientation) : ?
  • Protein Name : LTB
  • Protein Length : 124
  • Protein Note : Heat-labile enterotoxin beta chain; pfam01376
  • Protein Sequence : Show Sequence
    >gi|157021162|gb|ABV01313.1| LTB [Escherichia coli]
    MNKVKCYVLFTALLSSLYAHGAPQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGETFQ
    VEVPGSQHIDSQKKAIERMKDTLRITYLTETKIDKLCVWNNKTPNSIAAISMKN
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : LT is a hetero-oligomeric AB5 type enterotoxin composed of a 27 kDa A subunit with toxic ADP ribosyl transferase activity and a stable noncovalent-linked pentamer of 11.6 kDa B subunits. ETEC infection and colonization of the small intestine, and the production of LT, causes acute diarrhea that can be fatal without intervention (Moravec et al., 2007).
  • Related Vaccine(s): soybean-expressed E. coli LTB vaccine
11. FaeG
  • Gene Name : FaeG
  • Sequence Strain (Species/Organism) : Escherichia coli
  • Taxonomy ID : 83334
  • Gene Strand (Orientation) : ?
  • DNA Sequence : Show Sequence
    >gi|41394:1-45 Escherichia coli genes faeG, faeH, faeI, faeJ and IS629-like insertion sequence
    ACTCAGTGGAGCGCTCCGCTGAACGTAGCAATTACTTATTACTAA
  • Protein Sequence : Show Sequence
    >gi|41395|emb|CAA77759.1| faeG [Escherichia coli]
    TQWSAPLNVAITYY
  • Molecule Role Annotation : F4 (K88) fimbriae are long, proteinaceous appendages composed mainly of several hundreds of identical adhesive subunits called FaeG (Melkebeek et al., 2007).
  • Related Vaccine(s): soybean-expressed E. coli LTB vaccine
12. FimH from E. coli str. K-12 substr. MG1655
  • Gene Name : FimH from E. coli str. K-12 substr. MG1655
  • Sequence Strain (Species/Organism) : Escherichia coli str. K-12 substr. MG1655
  • VO ID : VO_0010987
  • NCBI Gene ID : 948847
  • NCBI Protein GI : 16132141
  • Locus Tag : b4320
  • Genbank Accession : U00096
  • Protein Accession : NP_418740
  • Taxonomy ID : 511145
  • Gene Starting Position : 4546830
  • Gene Ending Position : 4547732
  • Gene Strand (Orientation) : +
  • Protein Name : minor component of type 1 fimbriae
  • Protein pI : 7.88
  • Protein Weight : 27803.36
  • Protein Length : 300
  • Protein Note : minor fimbrial subunit, D-mannose specific adhesin
  • DNA Sequence : Show Sequence
    >gi|49175990:4546830-4547732 Escherichia coli str. K-12 substr. MG1655 chromosome, complete genome
    AATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCC
    TGTAAAACCGCCAATGGTACCGCTATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGC
    CCGTCGTGAATGTGGGGCAAAACCTGGTCGTGGATCTTTCGACGCAAATCTTTTGCCATAACGATTATCC
    GGAAACCATTACAGACTATGTCACACTGCAACGAGGCTCGGCTTATGGCGGCGTGTTATCTAATTTTTCC
    GGGACCGTAAAATATAGTGGCAGTAGCTATCCATTTCCTACCACCAGCGAAACGCCGCGCGTTGTTTATA
    ATTCGAGAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCTGTGAGCAGTGCGGGCGGGGTGGC
    GATTAAAGCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTC
    CAGTTTGTGTGGAATATTTACGCCAATAATGATGTGGTGGTGCCTACTGGCGGCTGCGATGTTTCTGCTC
    GTGATGTCACCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCAATTCCTCTTACCGTTTATTGTGCGAA
    AAGCCAAAACCTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACC
    GCGTCGTTTTCACCTGCACAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCGAATA
    ACACGGTATCGTTAGGAGCAGTAGGGACTTCGGCGGTGAGTCTGGGATTAACGGCAAATTATGCACGTAC
    CGGAGGGCAGGTGACTGCAGGGAATGTGCAATCGATTATTGGCGTGACTTTTGTTTATCAATA
  • Protein Sequence : Show Sequence
    >gi|16132141|ref|NP_418740.1| minor component of type 1 fimbriae [Escherichia coli str. K-12 substr. MG1655]
    MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPVVNVGQNLVVDLSTQIFCHNDYP
    ETITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVA
    IKAGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAK
    SQNLGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPANNTVSLGAVGTSAVSLGLTANYART
    GGQVTAGNVQSIIGVTFVYQ
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : Antibodies directed at the putative binding region of FimH (anti- s-FimH1-25) significantly reduced E. coli bladder infections in the experimental mouse model of urinary tract infections (Thankavel et al., 1997).
  • Related Vaccine(s): E. coli FimH with CFA and then IFA , KLH-s-FimH1-25 with CFA and then IFA
13. FimH from E. coli UTI89
  • Gene Name : FimH from E. coli UTI89
  • Sequence Strain (Species/Organism) : Escherichia coli UTI89
  • VO ID : VO_0010945
  • NCBI Gene ID : 3992235
  • NCBI Protein GI : 91213965
  • Locus Tag : UTI89_C5017
  • Genbank Accession : CP000243
  • Protein Accession : YP_543951
  • 3D structure: PDB ID : 1TR7
  • Taxonomy ID : 364106
  • Gene Starting Position : 4913554
  • Gene Ending Position : 4914456
  • Gene Strand (Orientation) : +
  • Protein Name : type 1 fimbiral adhesin FimH
  • Protein pI : 7.88
  • Protein Weight : 27858.43
  • Protein Length : 300
  • DNA Sequence : Show Sequence
    >gi|91209055:4913554-4914456 Escherichia coli UTI89, complete genome
    AATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCC
    TGTAAAACCGCCAATGGTACCGCAATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGC
    CTGCCGTGAATGTGGGGCAAAACCTGGTCGTAGATCTTTCGACGCAAATCTTTTGCCATAACGATTACCC
    AGAAACCATTACAGACTATGTCACACTGCAACGAGGTGCGGCTTATGGCGGCGTGTTATCTAGTTTTTCC
    GGGACCGTAAAATATAATGGCAGTAGCTATCCTTTCCCTACTACCAGCGAAACGCCGCGGGTTGTTTATA
    ATTCGAGAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCGGTGAGCAGTGCGGGGGGAGTGGC
    GATTAAAGCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTC
    CAGTTTGTGTGGAATATTTACGCCAATAATGATGTGGTGGTGCCCACTGGCGGCTGCGATGTTTCTGCTC
    GTGATGTCACCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCGATTCCTCTTACCGTTTATTGTGCGAA
    AAGCCAAAACCTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACC
    GCGTCGTTTTCACCCGCGCAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCGAATA
    ACACGGTATCGTTAGGAGCAGTAGGGACTTCGGCGGTAAGTCTGGGATTAACGGCAAATTACGCACGTAC
    CGGAGGGCAGGTGACTGCAGGGAATGTGCAATCGATTATTGGCGTGACTTTTGTTTATCAATA
  • Protein Sequence : Show Sequence
    >gi|91213965|ref|YP_543951.1| type 1 fimbiral adhesin FimH [Escherichia coli UTI89]
    MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPAVNVGQNLVVDLSTQIFCHNDYP
    ETITDYVTLQRGAAYGGVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVA
    IKAGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAK
    SQNLGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPANNTVSLGAVGTSAVSLGLTANYART
    GGQVTAGNVQSIIGVTFVYQ
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : FimH is a protective antigen (Langermann et al., 1997)
14. FyuA
  • Gene Name : FyuA
  • Sequence Strain (Species/Organism) : Escherichia coli APEC O1
  • VO ID : VO_0010965
  • NCBI Gene ID : 4492541
  • NCBI Protein GI : 117624167
  • Locus Tag : APECO1_1063
  • Genbank Accession : NC_008563
  • Protein Accession : YP_853080
  • Taxonomy ID : 405955
  • Gene Starting Position : 2119055
  • Gene Ending Position : 2121076
  • Gene Strand (Orientation) : +
  • Protein Name : pesticin/yersiniabactin receptor protein
  • Protein pI : 5.38
  • Protein Weight : 69187.33
  • Protein Length : 673
  • Protein Note : The gene fyuA encodes a 71 kDa outer-membrane protein FyuA (ferric yersiniabactin uptake). FyuA acts as a receptor for Fe-Ybt siderophore uptake (Hancock et al., 2008).
  • DNA Sequence : Show Sequence
    >gi|4492541|gb|G46250.1|G46250 Z8011_1 Zebrafish AB Danio rerio STS genomic clone Z8011 5', sequence tagged site
    GCTCCCTCCCTGTGAACAGAAACAGATGTTAGAAAACACAAACAAACTAACATCAGACTTAAAAATCAGG
    ACAGTACATGTAAAACGCACACACACACACACACACACACACACACACACACACACACACACACACACAC
    ACACACACACACACACAGGTCATTAATATGCACTACTAATCAAGAGCCATGACTGTGCAAGTTACAGTTG
    AGTCACAATGAGCCAAAAACTCTTTCATAAGAACAAAAGTCCATAATTCAGAAGTATAAAAGTATTTAGG
    AGACCAAGAAAGGCGAATTACAA
  • Protein Sequence : Show Sequence
    >gi|117624167|ref|YP_853080.1| pesticin/yersiniabactin receptor protein [Escherichia coli APEC O1]
    MKMTRLYPLALGGLLLPAIANAQTSQQDESTLVVTASKQSSRSASANNVSSTVVSAPELSDAGVTASDKL
    PRVLPGLNIENSGNMLFSTISLRGVSSAQDFYNPAVTLYVDGVPQLSTNTIQALTDVQSVELLRGPQGTL
    YGKSAQGGIINIVTQQPDSTPRGYIEGGVSSRDSYRSKFNLSGPIQDGLLYGSVTLLRQVDDGDMINPAT
    GSDDLGGTRASIGNVKLRLAPDDQPWEMGFAASRECTRATQDAYVGWNDIKGRKLSISDGSPDPYMRRCT
    DSQTLSGKYTTDDWVFNLISAWQQQHYSRAFPSGSLIVNMPQRWNQDVQELRAATLGDARTVDMVFGLYR
    QNTREKLNSAYDMPTMPYLSSTGYTTAETLAAYSDLTWHLTDRFDIGGGVRFSHDKSSTQYHGSMLGNPF
    GDQGKSNDDQVLGQLSAGYMLTDDWRVYTRVAQGYKPSGYNIVPTAGLDAKPFVAEKSINYELGTRYETA
    DVTLQAATFYTHTKDMQLYSGPVGMQTLSNAGKADATGVELEAKWRFAPGWSWDINGNVIRSEFTNDSEL
    YHGNRVPFVPRYGAGSSVNGVIDTRYGALMPRLAVNLVGPHYFDGDNQLRQGTYATLDSSLGWQATERMN
    ISVYVDNLFDRRYRTYGYMNGSSAVAQVNMGRTVGINTRIDFF
  • Molecule Role : Protective antigen
  • Related Vaccine(s): E. coli vaccine based on recombinant protein FyuA
15. Hma
  • Gene Name : Hma
  • Sequence Strain (Species/Organism) : Escherichia coli CFT073
  • VO ID : VO_0010984
  • NCBI Gene ID : 1037732
  • NCBI Protein GI : 26248334
  • Locus Tag : c2482
  • Genbank Accession : AE014075
  • Protein Accession : NP_754374
  • Taxonomy ID : 199310
  • Gene Starting Position : 2322323
  • Gene Ending Position : 2324470
  • Gene Strand (Orientation) : +
  • Protein Name : putative outer membrane receptor for iron compound or colicin
  • Protein pI : 5.31
  • Protein Weight : 75008.63
  • Protein Length : 715
  • Protein Note : Escherichia coli O157:H7 ortholog: z3159
  • DNA Sequence : Show Sequence
    >gi|26245917:2322323-2324470 Escherichia coli CFT073, complete genome
    AATGTTATATAATATACCTTGTCGAATTTATATCCTTTCCACTCTGTCATTATGCATTTCTGGGATAGTT
    TCTACTGCAACCGCAACTTCTTCAGAAACAAAAATCAGCAACGAAGAGACGCTCGTCGTGACCACGAATC
    GTTCGGCAAGCAACCTTTGGGAAAGCCCGGCGACTATACAGGTTATTGACCAACAAACATTGCAGAACTC
    CACCAATGCCTCCATAGCCGATAATTTGCAGGACATCCCCGGAGTAGAGATAACAGACAACTCCTTGGCA
    GGCCGTAAACAAATCCGCATTCGTGGCGAAGCATCCTCCCGTGTTTTAATTCTCATTGATGGTCAGGAGG
    TAACTTATCAGCGCGCCGGAGATAATTATGGTGTGGGACTGTTGATAGATGAGTCTGCGCTGGAGCGTGT
    TGAGGTAGTGAAAGGTCCATATTCCGTACTGTACGGTTCACAGGCAATTGGCGGTATTGTTAACTTCATA
    ACCAAAAAGGGAGGTGACAAACTTGCATCTGGAGTTGTGAAAGCTGTTTATAATTCCGCAACAGCAGGCT
    GGGAAGAATCAATCGCGGTCCAGGGGAGCATCGGTGGATTTGATTATCGCATCAACGGTAGTTATTCTGA
    TCAGGGCAATCGTGATACGCCGGATGGACGTCTGCCGAATACCAACTATCGTAACAATAGTCAGGGTGTA
    TGGTTGGGTTATAACTCCGGAAACCATCGTTTTGGCCTCTCGCTTGATCGCTACAGACTCGCGACGCAAA
    CTTACTATGAGGATCCAGACGGAAGCTATGAGGCATTTAGTGTCAAAATACCTAAACTTGAACGAGAGAA
    AGTTGGGGTATTCTATGACACAGACGTGGACGGTGACTATCTAAAAAAAATTCATTTCGACGCGTATGAG
    CAGACCATCCAGCGCCAATTTGCCAACGAAGTAAAAACGACACAGCCTGTTCCCAGTCCGATGATTCAGG
    CTCTGACCGTTCATAACAAGACTGACACCCATGATAAGCAATACACTCAGGCGGTCACATTGCAGAGTCA
    CTTTTCGCTGCCTGCTAATAATGAACTTGTTACCGGTGCACAGTACAAACAAGACAGGGTCAGCCAAAGG
    TCCGGTGGCATGACCTCAAGCAAATCTCTGACCGGCTTCATTAATAAGGAAACACGAACTCGCTCCTATT
    ATGAGTCAGAGCAAAGTACAGTCTCACTATTCGCACAAAATGACTGGCGATTCGCCGATCACTGGACATG
    GACAATGGGAGTTCGCCAATACTGGCTTTCTTCAAAGTTGACGCGTGGTGACGGAGTATCATATACCGCA
    GGCATTATAAGCGATACCTCTCTTGCCAGAGAGTCTGCGAGTGATCACGAAATGGTAACATCTACAAGCC
    TGCGCTATTCAGGTTTCGATAACTTGGAGTTACGCGCTGCGTTCGCGCAAGGCTACGTATTTCCCACACT
    CTCCCAGCTTTTTATGCAGACATCTGCGGGCGGCAGTGTCACATACGGAAATCCTGATCTTAAGGCTGAA
    CACTCCAATAACTTTGAATTAGGTGCACGATATAATGGTAATCAGTGGCTGATTGACAGCGCAGTTTACT
    ACTCAGAAGCTAAAGATTATATTGCAAGTCTGATCTGTGATGGCAGTATAGTTTGCAATGGTAACACCAA
    CTCCTCCCGTAGTAGCTACTATTATTATGACAATATTGATCGGGCAAAAACATGGGGACTGGAAATAAGC
    GCGGAATATAATGGCTGGGTTTTCTCGCCATATATCAGTGGCAATTTAATTCGTCGGCAATATGAAACTT
    CAACATTAAAAACAACTAATACAGGAGAACCAGCGATAAACGGACGTATAGGGCTGAAACATACTCTTGT
    GATGGGTCAGGCCAACATAATCTCTGATGTTTTTATTCGTGCTGCCTCTAGTGCAAAAGATGACAGTAAC
    GGTACCGAAACAAATGTTCCGGGCTGGGCCACTCTCAACTTTGCAGTAAATACAGAATTCGGTAACGAGG
    ATCAGTACCGGATTAACCTAGCACTCAATAACCTGACAGACAAACGCTACCGTACAGCACATGAAACTAT
    TCCTGCAGCAGGTTTTAATGCAGCTATAGGTTTTGTATGGAATTTCTG
  • Protein Sequence : Show Sequence
    >gi|26248334|ref|NP_754374.1| putative outer membrane receptor for iron compound or colicin [Escherichia coli CFT073]
    MLYNIPCRIYILSTLSLCISGIVSTATATSSETKISNEETLVVTTNRSASNLWESPATIQVIDQQTLQNS
    TNASIADNLQDIPGVEITDNSLAGRKQIRIRGEASSRVLILIDGQEVTYQRAGDNYGVGLLIDESALERV
    EVVKGPYSVLYGSQAIGGIVNFITKKGGDKLASGVVKAVYNSATAGWEESIAVQGSIGGFDYRINGSYSD
    QGNRDTPDGRLPNTNYRNNSQGVWLGYNSGNHRFGLSLDRYRLATQTYYEDPDGSYEAFSVKIPKLEREK
    VGVFYDTDVDGDYLKKIHFDAYEQTIQRQFANEVKTTQPVPSPMIQALTVHNKTDTHDKQYTQAVTLQSH
    FSLPANNELVTGAQYKQDRVSQRSGGMTSSKSLTGFINKETRTRSYYESEQSTVSLFAQNDWRFADHWTW
    TMGVRQYWLSSKLTRGDGVSYTAGIISDTSLARESASDHEMVTSTSLRYSGFDNLELRAAFAQGYVFPTL
    SQLFMQTSAGGSVTYGNPDLKAEHSNNFELGARYNGNQWLIDSAVYYSEAKDYIASLICDGSIVCNGNTN
    SSRSSYYYYDNIDRAKTWGLEISAEYNGWVFSPYISGNLIRRQYETSTLKTTNTGEPAINGRIGLKHTLV
    MGQANIISDVFIRAASSAKDDSNGTETNVPGWATLNFAVNTEFGNEDQYRINLALNNLTDKRYRTAHETI
    PAAGFNAAIGFVWNF
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : A vaccine made by Hma from E. coli strain CFT073 and 536 induced protection to the infection of virulent strain CFT073 and 536, respectively, in the bladder in the CBA/J mice. (Alteri et al., 2009).
  • Related Vaccine(s): E. coli Hma protein vaccine
16. IreA
  • Gene Name : IreA
  • Sequence Strain (Species/Organism) : Escherichia coli CFT073
  • VO ID : VO_0010985
  • NCBI Gene ID : 1037614
  • NCBI Protein GI : 26250982
  • Locus Tag : c5174
  • Genbank Accession : AE014075
  • Protein Accession : NP_757022
  • Taxonomy ID : 199310
  • Gene Starting Position : 4935989
  • Gene Ending Position : 4938037
  • Gene Strand (Orientation) : +
  • Protein Name : putative iron-regulated outer membrane virulence protein
  • Protein pI : 6.54
  • Protein Weight : 71236.88
  • Protein Length : 682
  • Protein Note : iron-responsive element (ireA); ireA gene is located on pathogenicity island I (PAI I); outer membrane protein
  • DNA Sequence : Show Sequence
    >gi|26245917:4935989-4938037 Escherichia coli CFT073, complete genome
    TATGAAGAACAAATATATCATTGCTCCGGGCATTGCCGTGATGTGTTCTGCAGTTATATCATCAGGTTAT
    GCCAGTTCTGATAAAAAAGAAGATACGCTTGTTGTTACTGCCTCCGGGTTCACTCAGCAGCTCAGAAATG
    CCCCGGCCAGTGTCTCAGTCATTACTTCAGAACAACTGCAAAAAAAACCGGTTTCAGATCTGGTCGATGC
    AGTAAAAGATGTTGAAGGGATTAGTATCACTGGTGGGAATGAAAAACCGGATATCAGTATACGTGGTCTA
    AGTGGCGATTACACGCTGATTCTGGTCGATGGACGACGTCAGAGCGGTCGGGAATCCAGACCAAACGGCA
    GCGGCGGTTTTGAAGCCGGATTTATCCCTCCTGTGGAAGCAATTGAACGCATTGAAGTGATCCGTGGCCC
    TATGTCTTCCCTGTATGGTTCTGATGCCATCGGAGGGGTCATTAATATCATAACCAAACCAGTTAATAAC
    CAAACATGGGATGGCGTACTTGGACTTGGGGGGATTATTCAGGAACATGGGAAATTTGGTAACTCAACCA
    CAAATGACTTCTATCTGTCAGGCCCATTGATTAAGGATAAACTTGGTCTTCAGCTATATGGAGGAATGAA
    CTATCGCAAGGAAGATAGTATCTCTCAGGGAACACCGGCAAAAGATAATAAGAATATAACGGCAACGCTC
    CAGTTTACTCCGACTGAAAGCCAGAAGTTTGTTTTTGAATATGGAAAAAATAACCAGGTGCATACATTAA
    CACCTGGTGAGTCTCTCGATGCCTGGACTATGCGGGGAAATCTTAAACAACCAAACAGTAAAAGAGAAAC
    GCATAATTCACGTAGTCACTGGGTAGCAGCATGGAATGCCCAGGGCGAAATACTGCATCCTGAAATTGCT
    GTTTATCAGGAGAAAGTTATTCGTGAGGTTAAATCAGGTAAAAAAGATAAATATAATCATTGGGATCTTA
    ATTACGAGTCAAGAAAACCGGAAATAACCAACACAATCATAGATGCAAAAGTGACGGCATTTCTGCCGGA
    AAATGTACTGACCATCGGAGGTCAATTTCAGCATGCAGAGCTCCGTGATGACTCAGCCACGGGTAAAAAA
    ACGACAGAAACACAGTCTGTTTCAATTAAACAGAAAGCTGTTTTTATAGAAAATGAATATGCAGCAACGG
    ATTCTCTCGCCCTGACTGGAGGACTGCGTCTCGATAATCATGAAATCTATGGCAGTTACTGGAATCCAAG
    ATTGTACGCTGTTTATAACCTGACCGATAATCTCACACTCAAAGGGGGGATCGCAAAAGCATTTCGGGCT
    CCTTCAATTCGTGAGGTGAGTCCTGGATTTGGAACACTGACGCAGGGTGGTGCCTCTATTATGTATGGAA
    ACAGGGACCTGAAACCGGAGACCAGTGTAACCGAAGAGATCGGTATTATTTATAGTAATGATAGTGGTTT
    TTCGGCGAGCGCGACGCTGTTTAATACTGATTTTAAAAATAAGTTGACCAGTTACGATATAGGTACAAAA
    GATCCAGTCACCGGGTTAAACACTTTTATTTATGATAATGTAGGTGAGGCAAATATCAGAGGGGTGGAGC
    TTGCAACTCAGATTCCTGTGTATGATAAATGGCATGTATCTGCAAACTATACATTTACTGACTCTCGTCG
    AAAAAGTGATGACGAAAGTCTCAATGGCAAGTCGCTGAAAGGGGAACCTCTGGAAAGAACTCCCAGACAT
    GCAGCCAATGCAAAACTGGAATGGGATTACACTCAGGATATTACATTTTATTCATCTCTGAATTATACGG
    GAAAACAAATCTGGGCAGCACAAAGAAATGGTGCTAAGGTTCCCCGCGTTCGTAATGGATTCACATCTAT
    GGATATTGGTCTAAATTACCAGATTCTGCCAGACACGCTGATTAATTTTGCCGTTCTTAACGTCACAGAC
    AGAAAGAGCGAGGATATCGATACCATTGATGGTAACTGGCAGGTCGATGAAGGACGCCGTTATTGGGCTA
    ATGTAAGAGTATCCTTCTG
  • Protein Sequence : Show Sequence
    >gi|26250982|ref|NP_757022.1| putative iron-regulated outer membrane virulence protein [Escherichia coli CFT073]
    MKNKYIIAPGIAVMCSAVISSGYASSDKKEDTLVVTASGFTQQLRNAPASVSVITSEQLQKKPVSDLVDA
    VKDVEGISITGGNEKPDISIRGLSGDYTLILVDGRRQSGRESRPNGSGGFEAGFIPPVEAIERIEVIRGP
    MSSLYGSDAIGGVINIITKPVNNQTWDGVLGLGGIIQEHGKFGNSTTNDFYLSGPLIKDKLGLQLYGGMN
    YRKEDSISQGTPAKDNKNITATLQFTPTESQKFVFEYGKNNQVHTLTPGESLDAWTMRGNLKQPNSKRET
    HNSRSHWVAAWNAQGEILHPEIAVYQEKVIREVKSGKKDKYNHWDLNYESRKPEITNTIIDAKVTAFLPE
    NVLTIGGQFQHAELRDDSATGKKTTETQSVSIKQKAVFIENEYAATDSLALTGGLRLDNHEIYGSYWNPR
    LYAVYNLTDNLTLKGGIAKAFRAPSIREVSPGFGTLTQGGASIMYGNRDLKPETSVTEEIGIIYSNDSGF
    SASATLFNTDFKNKLTSYDIGTKDPVTGLNTFIYDNVGEANIRGVELATQIPVYDKWHVSANYTFTDSRR
    KSDDESLNGKSLKGEPLERTPRHAANAKLEWDYTQDITFYSSLNYTGKQIWAAQRNGAKVPRVRNGFTSM
    DIGLNYQILPDTLINFAVLNVTDRKSEDIDTIDGNWQVDEGRRYWANVRVSF
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : Immunization with IreA protects against urinary tract colinization by E.coli CFT073 and reduces colinization by E.coli 536 in the bladder of CBA/J mice (Alteri et al., 2009).
  • Related Vaccine(s): E. coli IreA protein vaccine
17. IroN
  • Gene Name : IroN
  • Sequence Strain (Species/Organism) : Escherichia coli
  • VO ID : VO_0010988
  • NCBI Gene ID : 7379404
  • NCBI Protein GI : 222104801
  • Locus Tag : MM1_0014
  • Genbank Accession : AY545598
  • Protein Accession : YP_002539290
  • 3D structure: PDB ID : 1FEP
  • Taxonomy ID : 562
  • Plasmid No : pAPEC-1
  • Gene Starting Position : 9647
  • Gene Ending Position : 11824
  • Gene Strand (Orientation) : -
  • Protein Name : outer membrane receptor FepA
  • Protein pI : 5.85
  • Protein Weight : 74767.07
  • Protein Length : 725
  • Protein Note : Fep; Cbt; Cbr; FeuB; FepA; PfeA; IroN; BfeA; outer membrane receptor of ferric enterobactin and colicins B and D; interacts with the TonB-ExbBD complex which catalyzes the translocation of the siderophore to the periplasmic space
  • DNA Sequence : Show Sequence
    >gi|222104788:9647-11824 Escherichia coli plasmid pAPEC-1, complete sequence
    ATCAGAATGATGCGGTAACTCCGGCATAGTAAGCCCGGCCTGGCTCGTTATAGGTATTCGCCCCTTCAGA
    AGATCGGAAGATCTGTTTATTGAGGATATTACTGACGCCGACATTAAGACGCAGATTTTTATTAATATCG
    TAATTGAAGTTCGTCCCCACCAGTGAATAAGCGCCCAGCTCTTTACCTGACAGACCGCCAGTATCTTCAC
    TGCGGGTTTCCGCATGAGTACGCGGTTTTTGTCTGCCATATAACGTCCAGTTGACGCTGGCAGAAAACGC
    CTGGGTGATGGTCCAGTTAAGCGAGTTATTGATAGTATATTTCGGGATGACCGACAGAGGATTACCGGTG
    TCTTTTTGCTCCGAAGTGATCATCCATGTGGCATTGGTATTCCAGTTCAGACGATCTTTCACCAGTGGGA
    AAGACATACTGGCTTCGATACCGTCCACCAGAGCTTTCCCGCCATTCTGCCACTTGAGGATATATGCGCC
    TGAAGCGGTTTGCCCGATAACGTTATCCCCGGCCACGATCTTATTCTGGTAATCATTGCGGAAGTAGGTC
    ACACTTGCGTGGTAATCTTCCCAGGTGAACTCCAGCCCAATTTCTTTATTGACGCTGATTTCCGGATCGA
    GATCTTTATTACCGATCAGGTAGCACCCGCCTGATGTAATATCTTTTGGACAGCCATTGCCTTTCGAGTA
    GAGCAGATAGCCTTCACTGGATTGATACAGGTTTGGGGCTTTAAAGGTTCGGGCAACCCCTGCTTTGACT
    TTGAAATAATCGCCCAATTCCTGCGAAAGATTCAGACTGGGGCTGAAGTTCCCGCCGGAGTCGCTGAGAT
    AATCAAAGCGCAGGCCGGGAATGATATTCGTGCCAGGAACCGGCTCAATGTTATCTTCAATATACAGCGC
    ACTGATTTGAGAATGATTTTTACTGCTGCGATCCGCAGCAGAGCCAGAAATACCGCTGATATCACTGTCA
    TTCACCGTCAGGCTGGTAGAGGAAGGATCATCGAGCTTATCGCGGTTCCACTCTGCACCAACGGTCAGCG
    TTTGATCAACCATCACATTCAAAGGAATATTAAGCTCGCCGCTGGTTCGCCAGGAACTCAGGCGATTGGT
    CGTAAACTTTTCACCCGCTAAAATACGCCCTTCACCACCGCCGGATAATCCTTCATTCATGCGGGTATTA
    TTGGTTTTCTCGTAATAAACACCAAAGCGACTTTGTCCCCAGTCCCAGATACCATTATGCGTAATGCCAT
    AATTCTGTCGGTACAGGCGGTTCGTCTCTTTGCCGGATTTTGCCAGGCTTTCGGTAACTGCACTGGAAGA
    ACTGTTTTGCGTATCGCCCGCATAGATATTCCCCTGGCGGCTATATCCGGCTTCGAAATCGAGAATCTGC
    TGCGGATTTAATTTCCACGAGACAACGCCGTTAATATCTTTGTTACGTACCCCTTCATGCCCGGCTGCGT
    TTTTCGTACCGACCGGAGAATTAATATCCCAACTGTCAGCATCCGTTTTATTCAGGTTACCATACAAACG
    CGTGGTAAGAGCATTACCAGCCAGAGGCCCACTAAGGCTGAAATTGGCGCGACGCGTAGCGCCCTCATCG
    CTACTTTCCGGCTGATTGGTGTATAACGACAGCGAACCGTGCCAGTCGTTGGTGGGACGTTTGGTAATGA
    TGTTCACCACCCCCCCGGCTGCCCCCGAACCGTAGCGCGCCGCCGCAGGGCCGCGGATCACTTCAATACG
    CTCAACCTGTTCCGGTGGCACCCAGTTGGTGTCACCGCGGGTATCACGCTCTCCACGCCAGCTATAACGC
    ACGGAGTTACGTGACGTCACCGGTACACCATCAATTAAAATTAAGGTGTTTTCCGGCCCCATACCACGAA
    TATCGATCTGGCGGTTGTTACCGCGTGTGCCCGAGGCGCTATTGCCGGTAAGATTGACGCCAGGCATTTT
    ACGAATAATATCTGAAAGGTCGTTTACCGGAGGGGTCTTTTTAATATCCTCGCTGGTAATAACCGACACG
    CCCGGCTGCTGTTTTAATACCTGCTCAGCGGTGGCTTCCACCACCAGAGTCTCGTCATTATCATCGTCGG
    AGGATTTGGCTACTGATACCTGGCTATTCAACCCAACCAGGAGCACAGTTAGCGACCAGAGGATTTTGTT
    AATTCTCA
  • Protein Sequence : Show Sequence
    >gi|222104801|ref|YP_002539290.1| IroN, siderophore receptor [Escherichia coli]
    MRINKILWSLTVLLVGLNSQVSVAKSSDDDNDETLVVEATAEQVLKQQPGVSVITSEDIKKTPPVNDLSD
    IIRKMPGVNLTGNSASGTRGNNRQIDIRGMGPENTLILIDGVPVTSRNSVRYSWRGERDTRGDTNWVPPE
    QVERIEVIRGPAAARYGSGAAGGVVNIITKRPTNDWHGSLSLYTNQPESSDEGATRRANFSLSGPLAGNA
    LTTRLYGNLNKTDADSWDINSPVGTKNAAGHEGVRNKDINGVVSWKLNPQQILDFEAGYSRQGNIYAGDT
    QNSSSSAVTESLAKSGKETNRLYRQNYGITHNGIWDWGQSRFGVYYEKTNNTRMNEGLSGGGEGRILAGE
    KFTTNRLSSWRTSGELNIPLNVMVDQTLTVGAEWNRDKLDDPSSTSLTVNDSDISGISGSAADRSSKNHS
    QISALYIEDNIEPVPGTNIIPGLRFDYLSDSGGNFSPSLNLSQELGDYFKVKAGVARTFKAPNLYQSSEG
    YLLYSKGNGCPKDITSGGCYLIGNKDLDPEISVNKEIGLEFTWEDYHASVTYFRNDYQNKIVAGDNVIGQ
    TASGAYILKWQNGGKALVDGIEASMSFPLVKDRLNWNTNATWMITSEQKDTGNPLSVIPKYTINNSLNWT
    ITQAFSASVNWTLYGRQKPRTHAETRSEDTGGLSGKELGAYSLVGTNFNYDINKNLRLNVGVSNILNKQI
    FRSSEGANTYNEPGRAYYAGVTASF
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : Active immunization of BALB/c mice with IroN antigen in Freund's adjuvant protects mice from lethal challenge with ExPEC strain S26 (Durant et al., 2007).
18. Iss
  • Gene Name : Iss
  • Sequence Strain (Species/Organism) : Escherichia coli APEC O1
  • VO ID : VO_0010964
  • NCBI Gene ID : 5616654
  • NCBI Protein GI : 157418230
  • Locus Tag : APECO1_O1CoBM146
  • Genbank Accession : DQ381420
  • Protein Accession : YP_001481302
  • Taxonomy ID : 405955
  • Plasmid No : pAPEC-O1-ColBM
  • Gene Starting Position : 126236
  • Gene Ending Position : 126544
  • Gene Strand (Orientation) : -
  • Protein Name : Iss
  • Protein pI : 8.5
  • Protein Weight : 10271.09
  • Protein Length : 102
  • DNA Sequence : Show Sequence
    >gi|157418083:126236-126544 Escherichia coli APEC O1 plasmid pAPEC-O1-ColBM, complete sequence
    ACTATTGTGAGCAATATACCCGGGCTTCCAGCGGAGTATAGATGCCAAAAGTGATAAAACCGAGCAATCC
    ATTTACGAATGTTTGCTGAGTTTCTGTTTTAACAACATTTTCTGCACCGCCACAAATTTTGGCTGCATCA
    ACAGTTTTCTCTTGTCCAATTCCCGAAACGAAGAAATGATGAGTGATGGTTTCCTTTGGTGTTACTGCTG
    TCGGTTTGTTTCCAACAGTAAACGTTTGTTGAGCACATCCTGTAATAAGCATTGCCAGAGCGGCAGAAAA
    TAACATTTTTTTCATCTTATTATCCTGCA
  • Protein Sequence : Show Sequence
    >gi|157418230|ref|YP_001481302.1| Iss [Escherichia coli APEC O1]
    MQDNKMKKMLFSAALAMLITGCAQQTFTVGNKPTAVTPKETITHHFFVSGIGQEKTVDAAKICGGAENVV
    KTETQQTFVNGLLGFITFGIYTPLEARVYCSQ
  • Molecule Role : Protective antigen
  • Related Vaccine(s): APEC vaccine using GST-Iss fusion protein
19. IutA
  • Gene Name : IutA
  • Sequence Strain (Species/Organism) : Escherichia coli CFT073
  • VO ID : VO_0010986
  • NCBI Gene ID : 1039578
  • NCBI Protein GI : 26249458
  • Locus Tag : c3623
  • Genbank Accession : AE014075
  • Protein Accession : NP_755498
  • Taxonomy ID : 199310
  • Gene Starting Position : 3461192
  • Gene Ending Position : 3463471
  • Gene Strand (Orientation) : -
  • Protein Name : IutA protein
  • Protein pI : 5.07
  • Protein Weight : 79683.07
  • Protein Length : 759
  • Protein Note : Residues 28 to 759 of 759 are 87.56 pct identical to residues 2 to 732 of 732 from SwissProt.40 : >sp|P14542|IUTA_ECOLI FERRIC AEROBACTIN RECEPTOR PRECURSOR (CLOACIN RECEPTOR)
  • DNA Sequence : Show Sequence
    >gi|26245917:3461192-3463471 Escherichia coli CFT073, complete genome
    GTCAGAACAGCACTGAGTAGTTCAGACCAAAGGTTCGGCCCCGGCCTTTGTAGTCGTACAGTGAAGCAGG
    GCCGTAACCCGGGCTGTAGTACAGAGGTGCACGCTGTCCCCAGACAGTGGTATAGTCACGGTCGAAGAGG
    TTCTCAACGCTGAAGCTGAGTGTTCCCACCGGAAGCTGCCAACTACTGATAAAATCGACGGTAGTGTAAC
    CATTAATATCGTTACCCTCTGCATCGCTTACGTCGAAAGAAGTGGTGCTCTGTACACGCAGACTCCACGG
    TTCCGGCGCCCAGTTAATGTAAGCTGTCGCTTTCGATGGACTTGATTCCTTCACGTCATATTTTTGCCAT
    TGACCGTTCACTTTCGACTCGGTTTTCAGCACATTGAAGTTCACACCGGTACTCCAGTCAGTATCCGGGA
    TCAGGTAGTCCACCGCACCTTCCACGCCGTAAATACGGCGCCTGTCGTCCTTCACACTGATGGTCAGATC
    TTTATTCCTTTCCACGCTCTTATTGGAAAGCGAGTAATATGCCGCGATTTGAGTCCGCAGGTTGTCACCG
    GTAAAGCGCCAGCCCAGTTCATAAGAATCGACTTTCACGCCTTCCAGCTTACTGTCGCTGACGTTCACGC
    TCTTTGTCAGGGGAAGATGGCCGTTCACTGCTGCACCATAGATGCCGCGACCATAATATTTCCCCGGATC
    CGGCAATGCCACCCCCTGGGAAAAATTGAACCATGCCTGCTGACGTTCGGTGATGTGCATCAGCAGACCA
    GCATTGAACAGAAAGTTATCGTAATCTACCGAACCACCAGGAATGGCGTCGGCAGATATCGCCTTCCCGG
    CAGCAATCTTCTGTTGCTGCGTGTAGTCGATGAAATCATCTACCCTGTTCTCAGTATACTGATAGCGTAC
    GCCACCGCTAACGGTAAAAATATCATTAATGTCATAGCTGGATTGCAGGAAGGCCGCCAGATTGGTGATG
    TCATATGACGGATAGCGCCCGGTGGTGTAAATCTTATGGTTGTTCAGCCCTCCGGAAGCACTTGCCTGAG
    CCAGATCGAAGAACATCTGGTTGGAGGTAAAGCGCTCATGCTCAGCATCCAGCCCCCAGGTGATTTGCCA
    GCCGTCCATAAGTTGGCTGTTCAGAGTCAGTTTCATGCCGTACTGGTCGGTATCCTGCTGTGACGAGGAG
    AAAGCCGTCGCCTGTTTATTCGCATTTACCGTCGGGAACGGGTAGAACCGCAACGACTCATCGCGGTAGT
    AAACCTGACCGACCAGTTCCTGTCTCAGGAAATCACTGTCAGAGTACTGCAGGCTGATCAAATGCCGCTC
    AGTGCCGGGAATGCGGTCAGAATTCAGCCCCTTACTGACGTATGGTGTGCTGCTCCCGCTGATGGCGGAA
    AAGCCTTTCCCGAGATTAAGCCCGTAATTGTCGTCCCCCTGACTTTTATAGTACTGCGTTATCAGTTGAA
    GCTGCCGGGATTCATCGATGTTCAGCGTACCGGTTCCCATGATGTCCAGCCGATTGGAGTGCTGCAGGCC
    GGTCTGGGTGTTATCAAGCAGGGTGGCATCGCCGTTACCGTCAAACCAGCCGCCAAATTTCTGATATGCC
    ACGGAAAGACGTCCGGAGATATGGTCATTTCCGCCGGAGACAGCACCGGCAATGCGCTCATCGTGATCTT
    TACTGCTGTTAAAGCCACTTTTTGTGCCAGCCTCAAACTCCATCATGGTTTCCGGCTGGCCTTTTTTGGT
    CACGATGTTGATCAACCCTCCGGTACTCCCGCCACCGTACAGGGCCGTCGCGCCGGAGATCACTTCAATA
    TGGTCGATATTAAAAGGATCGACAGAGTCCAGTTGTCGGCTGTCGGAACGTGAAGAGTTGAGGCGCACAC
    CGTCAATCAGGACAACCAGCGGGCGGCCACGCATGTTCATACCGTAGTTGGTTCGGCTCTGGCTGCTGAC
    ATCAAGGCCGGGGATTAACTGAGCCAGTGCGTCTTTCAGCTCTTTACCGCCCTGAATCTGCTGCTCCAGT
    TCGGCATTTTCGATAACCCAGGTGGTTTGCGCCATCTCCGCTACAGTTCGATTGCTGCGGCTGGCAGACA
    CTATGATCTCATTATCATCGTTTTGCTGGGCGACAGCTGGTGACAGCACGACAAGAAGCAGCGGACCAAG
    AGCCCGGGGCATATACTTTTTGCGCATCATCGTTATTCCTGAATATTTGTTGTATAGTGAGTTAAAGCAG
    CAGCCTCCGGCTGCGGTTTTTTCCGGCTGCCGCTGCGCCA
  • Protein Sequence : Show Sequence
    >gi|26249458|ref|NP_755498.1| IutA protein [Escherichia coli CFT073]
    MAQRQPEKTAAGGCCFNSLYNKYSGITMMRKKYMPRALGPLLLVVLSPAVAQQNDDNEIIVSASRSNRTV
    AEMAQTTWVIENAELEQQIQGGKELKDALAQLIPGLDVSSQSRTNYGMNMRGRPLVVLIDGVRLNSSRSD
    SRQLDSVDPFNIDHIEVISGATALYGGGSTGGLINIVTKKGQPETMMEFEAGTKSGFNSSKDHDERIAGA
    VSGGNDHISGRLSVAYQKFGGWFDGNGDATLLDNTQTGLQHSNRLDIMGTGTLNIDESRQLQLITQYYKS
    QGDDNYGLNLGKGFSAISGSSTPYVSKGLNSDRIPGTERHLISLQYSDSDFLRQELVGQVYYRDESLRFY
    PFPTVNANKQATAFSSSQQDTDQYGMKLTLNSQLMDGWQITWGLDAEHERFTSNQMFFDLAQASASGGLN
    NHKIYTTGRYPSYDITNLAAFLQSSYDINDIFTVSGGVRYQYTENRVDDFIDYTQQQKIAAGKAISADAI
    PGGSVDYDNFLFNAGLLMHITERQQAWFNFSQGVALPDPGKYYGRGIYGAAVNGHLPLTKSVNVSDSKLE
    GVKVDSYELGWRFTGDNLRTQIAAYYSLSNKSVERNKDLTISVKDDRRRIYGVEGAVDYLIPDTDWSTGV
    NFNVLKTESKVNGQWQKYDVKESSPSKATAYINWAPEPWSLRVQSTTSFDVSDAEGNDINGYTTVDFISS
    WQLPVGTLSFSVENLFDRDYTTVWGQRAPLYYSPGYGPASLYDYKGRGRTFGLNYSVLF
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : Immunization with IutA protects against urinary tract colinization by E.coli CFT073 in the bladders of CBA/J mice (Alteri et al., 2009).
  • Related Vaccine(s): E. coli IutA protein vaccine
20. ler
  • Gene Name : ler
  • Sequence Strain (Species/Organism) : Escherichia coli O157:H7 str. TW14359
  • NCBI Gene ID : 8219269
  • NCBI Protein GI : 254795663
  • Locus Tag : ECSP_4703
  • Genbank Accession : CP001368
  • Protein Accession : YP_003080500
  • Taxonomy ID : 544404
  • Gene Starting Position : 4678930
  • Gene Ending Position : 4679301
  • Gene Strand (Orientation) : -
  • Protein Name : enterocyte effacement (LEE)-encoded regulator
  • Protein pI : 4.97
  • Protein Weight : 13635.36
  • Protein Length : 123
  • DNA Sequence : Show Sequence
    >gi|254791136:4678930-4679301 Escherichia coli O157:H7 str. TW14359, complete genome
    GTTAAATATTTTTCAGCGGTATTATTTCTTCTTCAGTGTCCTTCACAAGAAAATCTTCTTTCTTCATTCC
    ATTCAACAGTGCTTCTTTAAGCCAGCGTGGCTGTCGGCCTACGCCCGACCAGGTCTGCCCTTCTTCATTG
    CGGTAGTAAACACCTTTCGATGAGTTCCGGCGAGCGAGTCCATCATCAGGCACATTAGTATATCCCAGCT
    CTTGTAAGGTTATATTGTAATAAGTAATCTGCTTCTGAATCGACTCAATTACACTTTGAACTTCCTGCTC
    TCGCAGTCGCTTTGCTTCCTGCTGTAGAACTGCAATTTGCTCTATAAGCTGAATGTATGGACTTGTTGTA
    TGTGAATTATTTTCCATATTCA
  • Protein Sequence : Show Sequence
    >gi|254795663|ref|YP_003080500.1| locus of enterocyte effacement (LEE)-encoded regulator [Escherichia coli O157:H7 str. TW14359]
    MNMENNSHTTSPYIQLIEQIAVLQQEAKRLREQEVQSVIESIQKQITYYNITLQELGYTNVPDDGLARRN
    SSKGVYYRNEEGQTWSGVGRQPRWLKEALLNGMKKEDFLVKDTEEEIIPLKNI
  • Molecule Role : Virmugen
  • Molecule Role Annotation : A ler deletion mutant derived from wild-type EHEC O157:H7 86-24 was constructed by use of suicide vector pCVD442. Following challenge of 7-day-old suckling mice with O157:H7 EDL933, 75.2% born to group B mothers (immunized with F25) sur- vived, as did 83.0% born to group C mothers (immunized with F105). The surviving suckling mice consistently gained body weight. Only 16.8% of sucking mice born to control group mice survived the challenge (Liu et al., 2009).
  • Related Vaccine(s): Escherichia coli ler mutant vaccine
21. rfaL
  • Gene Name : rfaL
  • Sequence Strain (Species/Organism) : Escherichia coli str. K-12 substr. MG1655
  • NCBI Gene ID : 948148
  • NCBI Protein GI : 16131493
  • Locus Tag : b3622
  • Genbank Accession : U00096
  • Protein Accession : NP_418079
  • Taxonomy ID : 511145
  • Gene Starting Position : 3794970
  • Gene Ending Position : 3796229
  • Gene Strand (Orientation) : +
  • Protein Name : O-antigen ligase
  • Protein pI : 9.92
  • Protein Weight : 44891.56
  • Protein Length : 419
  • Protein Note : Also known as ECK3612; JW3597; waaLO-antigen ligase; lipopolysaccharide core biosynthesis
  • DNA Sequence : Show Sequence
    >gi|49175990:3794970-3796229 Escherichia coli str. K-12 substr. MG1655 chromosome, complete genome
    CATGCTAACATCCTTTAAACTTCATTCATTGAAACCTTACACTCTGAAATCATCAATGATTTTAGAGATA
    ATAACTTATATATTATGTTTTTTTTCAATGATAATTGCATTCGTCGATAATACTTTCAGCATAAAAATAT
    ATAATATCACTGCTATAGTTTGCTTATTGTCACTAATTTTACGTGGCAGACAAGAAAATTATAATATAAA
    AAACCTTATTCTTCCCCTTTCTATATTTTTAATAGGCTTGCTTGATTTAATTTGGTATTCTGCGTTTAAA
    GTAGATAATTCGCCATTTCGTGCTACTTACCATAGTTATTTAAATACTGCCAAAATATTTATATTTGGTT
    CTTTTATTGTTTTCTTGACACTAACTAGCCAGCTAAAATCAAAAAAAGAGAGTGTATTATACACTTTGTA
    TTCTCTGTCATTTCTAATTGCTGGATATGCAATGTATATTAATAGCATTCATGAAAATGACCGCATTTCT
    TTTGGTGTAGGAACGGCAACAGGAGCAGCATATTCAACAATGCTAATAGGGATAGTTAGTGGCGTTGCGA
    TTCTTTATACTAAGAAAAATCATCCTTTTTTATTTTTATTAAATAGTTGCGCGGTACTTTATGTTCTGGC
    GCTAACACAAACCAGAGCAACCCTACTCCTGTTCCCTATAATTTGTGTTGCTGCATTAATAGCTTATTAT
    AATAAATCACCCAAGAAATTCACTTCCTCTATTGTTCTACTAATTGCTATATTAGCTAGCATTGTTATTA
    TATTTAATAAACCAATACAGAATCGCTATAATGAAGCATTAAATGACTTAAACAGTTATACCAATGCTAA
    TAGTGTTACTTCCCTAGGTGCAAGACTGGCAATGTACGAAATTGGTTTAAATATATTCATAAAGTCACCT
    TTTTCATTTAGATCAGCAGAGTCACGCGCTGAAAGTATGAATTTGTTAGTTGCAGAACACAATAGGCTAA
    GAGGGGCATTGGAGTTTTCTAACGTACATCTACATAATGAGATAATTGAAGCAGGGTCACTGAAAGGTCT
    GATGGGAATTTTTTCCACACTTTTCCTCTATTTTTCACTATTTTATATAGCATATAAAAAACGAGCTTTG
    GGTTTGTTGATATTAACGCTTGGCATTGTGGGGATTGGACTCAGTGATGTGATCATATGGGCACGCAGCA
    TTCCAATTATCATTATATCCGCTATAGTCCTCTTACTCGTCATTAATAATCGTAACAATACAATTAATTA
  • Protein Sequence : Show Sequence
    >gi|16131493|ref|NP_418079.1| O-antigen ligase [Escherichia coli str. K-12 substr. MG1655]
    MLTSFKLHSLKPYTLKSSMILEIITYILCFFSMIIAFVDNTFSIKIYNITAIVCLLSLILRGRQENYNIK
    NLILPLSIFLIGLLDLIWYSAFKVDNSPFRATYHSYLNTAKIFIFGSFIVFLTLTSQLKSKKESVLYTLY
    SLSFLIAGYAMYINSIHENDRISFGVGTATGAAYSTMLIGIVSGVAILYTKKNHPFLFLLNSCAVLYVLA
    LTQTRATLLLFPIICVAALIAYYNKSPKKFTSSIVLLIAILASIVIIFNKPIQNRYNEALNDLNSYTNAN
    SVTSLGARLAMYEIGLNIFIKSPFSFRSAESRAESMNLLVAEHNRLRGALEFSNVHLHNEIIEAGSLKGL
    MGIFSTLFLYFSLFYIAYKKRALGLLILTLGIVGIGLSDVIIWARSIPIIIISAIVLLLVINNRNNTIN
  • Molecule Role : Virmugen
  • Molecule Role Annotation : Deletion of waaL results in a strain that stimulates enhanced urothelial cytokine secretion, which is an enhanced innate immune response. Inoculation with the vaccine strain protected mice against challenge with a broad range of clinical uropathogenic E. coli isolates and produced immunity that lasted ⩾8 weeks (Billips et al., 2009).
  • Related Vaccine(s): Escherichia coli rfaL mutant vaccine
22. Sph
  • Gene Name : Sph
  • Sequence Strain (Species/Organism) : Escherichia coli
  • NCBI Gene ID : 4364224
  • NCBI Protein GI : 116006945
  • Locus Tag : pO86A1_p162
  • Genbank Accession : NC_008460
  • Protein Accession : YP_788128
  • Taxonomy ID : 562
  • Plasmid No : pO86A1
  • Gene Starting Position : 117695
  • Gene Ending Position : 118495
  • Gene Strand (Orientation) : ?
  • Protein Name : streptomycin resistance protein
  • Protein pI : 4.88
  • Protein Weight : 28171.92
  • Protein Length : 266
  • Protein Note : Streptomycin resistance
  • DNA Sequence : Show Sequence
    >gi|4364224|gb|AQ393201.1|AQ393201 CITBI-E1-2547I20.TF CITBI-E1 Homo sapiens genomic clone 2547I20, DNA sequence
    CGAATTCACAGGTGAACAACCTAAAGCAAAACTGGAAGTCATAATAGATAAAATGACAACTTAAACTCTT
    TTGCTACGGTGTCAGGCACACTTATATTACTACAAGATTCTATAGGTCTTCTCCGAAGATTTTATTAAGT
    TTTTTTTTTTTTAGTTTTGGTAGAAAGTGACTCTTCTATTTTAAATAATTTGAGATTTGGGATTTATTCT
    CTAAATATGTTACTACTTCTCACAAACATTTAAAAATAATGGCAATGCCTACTGTTTGCAAAGTGTGTAC
    ACTATTCTACAGTTTAAGAGGCCCTTAAAACTACATACATGCAAGCTTTTTTTGGAAAAAAAATGTATAT
    TTCCTCAAAATAAATCATTAGTTCTTGTTTCAAGGTAAAGAGAAATGCCTAACCATTTATGATTTAAAAA
    AAAAAAGATGAAAGACTGTCTTTTGATGTTTGTCTGCTTTAGTCTGCAAAACAGTGCAACTCAAGTGAGC
    CTCAGTGCAGAGCAAGGACAGAACAGATGGGCAGTTCTTGGGGGCTCTTAGTTCCAGGTTAAATCTAAAC
    TTG
  • Protein Sequence : Show Sequence
    >gi|116006945|ref|YP_788128.1| streptomycin resistance protein [Escherichia coli]
    MERWRLLRDGELLTTHSSWILPVRQGDMPAMLKVARIPDEEAGYRLLTWWDGQGAARVFASAAGALLMER
    ASGAGDLAQIAWSGQDDEACRILCDTAARLHAPRSGPPPDLHPLQEWFQPLFRLAAEHAALAPAASVARQ
    LLAAPREVCPLHGDLHHENVLDFGDRGWLAIDPHGLLGERTFDYANIFTNPDLSDPGRPLAILPGRLEAR
    LSIVVATTGFEPERLLRWIIAWTGLSAAWFIGDGDGEGEGAAIDLAVNAMARRLLD
  • Molecule Role Annotation : (Daley et al., 2007)
  • Related Vaccine(s): Live attenuated ETEC vaccine ACAM2007 , Live attenuated ETEC vaccine ACAM2010
23. StxB1
  • Gene Name : StxB1
  • Sequence Strain (Species/Organism) : Phage BP-4795
  • NCBI Gene ID : 2641657
  • NCBI Protein GI : 157166026
  • Locus Tag : PBV4795_ORF41
  • Genbank Accession : NC_004813
  • Protein Accession : YP_001449278
  • Taxonomy ID : 196242
  • Gene Starting Position : 20301
  • Gene Ending Position : 20570
  • Gene Strand (Orientation) : ?
  • Protein Name : Shiga toxin 1 subunit B
  • Protein pI : 8.22
  • Protein Weight : 9147.68
  • Protein Length : 89
  • Protein Note : ORF41
  • DNA Sequence : Show Sequence
    >gi|2641657|gb|AF034655.1|AF034655 Tarsius syrichta clone TARS07=9 tarsier Alu
    GGATTTGAGACCAGCCTAAGCAACACAGCGAAACGTCACCTCTAAAATAAATTTAAAAAATCAGCTGGGC
    AGAGTGGCACATGCCTATAGTTGCAGCTACCTGAAAGCTGAGACGGAGAGATTGCCTGAGTTCAGTAGGT
    CGAGGCTGCAGTGACCGTCAACGTGCCACTGCATTCTAGCCTGGGCAACA
  • Protein Sequence : Show Sequence
    >gi|157166026|ref|YP_001449278.1| Shiga toxin 1 subunit B [Phage BP-4795]
    MKKTLLIAASLSFFSASALATPDCVTGKVEYTKYNDDDTFTVKVGDKELFTNRWNLQSLLLSAQITGMTV
    TIKTNACHNGGGFSEVIFR
24. StxB2
  • Gene Name : StxB2
  • Sequence Strain (Species/Organism) : Enterobacteria phage 933W
  • VO ID : VO_0010938
  • NCBI Gene ID : 1262010
  • NCBI Protein GI : 9632507
  • Locus Tag : 933Wp41
  • Genbank Accession : X07865
  • Protein Accession : NP_049501
  • Taxonomy ID : 10730
  • Gene Starting Position : 22432
  • Gene Ending Position : 22701
  • Gene Strand (Orientation) : +
  • Protein Name : Shiga toxin 2 subunit B
  • Protein pI : 4.98
  • Protein Weight : 9278.79
  • Protein Length : 89
  • DNA Sequence : Show Sequence
    >gi|9632466:22432-22701 Enterobacteria phage 933W, complete genome
    CATGAAGAAGATGTTTATGGCGGTTTTATTTGCATTAGCTTCTGTTAATGCAATGGCGGCGGATTGTGCT
    AAAGGTAAAATTGAGTTTTCCAAGTATAATGAGGATGACACATTTACAGTGAAGGTTGACGGGAAAGAAT
    ACTGGACCAGTCGCTGGAATCTGCAACCGTTACTGCAAAGTGCTCAGTTGACAGGAATGACTGTCACAAT
    CAAATCCAGTACCTGTGAATCAGGCTCCGGATTTGCTGAAGTGCAGTTTAATAATGACTG
  • Protein Sequence : Show Sequence
    >gi|9632507|ref|NP_049501.1| Shiga toxin 2 subunit B [Enterobacteria phage 933W]
    MKKMFMAVLFALASVNAMAADCAKGKIEFSKYNEDDTFTVKVDGKEYWTSRWNLQPLLQSAQLTGMTVTI
    KSSTCESGSGFAEVQFNND
  • Molecule Role : Protective antigen
  • Related Vaccine(s): rBCG -Stx2B (Escherichia coli ) , Shiga Toxin 2 B Subunit Vaccine
25. Tir
  • Gene Name : Tir
  • Sequence Strain (Species/Organism) : Escherichia coli O157:H7 EDL933
  • VO ID : VO_0010940
  • NCBI Gene ID : 960860
  • NCBI Protein GI : 15804222
  • Locus Tag : Z5112
  • Genbank Accession : NC_002655.2
  • Protein Accession : NP_290261.1
  • Taxonomy ID : 562
  • Gene Starting Position : 4668913
  • Gene Ending Position : 4670589
  • Gene Strand (Orientation) : -
  • Protein Name : putative translocated intimin receptor protein
  • Protein pI : 4.78
  • Protein Weight : 58022.1
  • Protein Length : 558
  • Protein Sequence : Show Sequence
    >gi|15804222|ref|NP_290261.1| putative translocated intimin receptor protein [Escherichia coli O157:H7 EDL933 ]
    MPIGNLGHNPNVNNSIPPAPPLPSQTDGAGGRGQLINSTGPLGSRALFTPVRNSMADSGDNRASDVPGLP
    VNPMRLAASEITLNDGFEVLHDHGPLDTLNRQIGSSVFRVETQEDGKHIAVGQRNGVETSVVLSDQEYAR
    LQSIDPEGKDKFVFTGGRGGAGHAMVTVASDITEARQRILELLEPKGTGESKGAGESKGVGELRESNSGA
    ENTTETQTSTSTSSLRSDPKLWLALGTVATGLIGLAATGIVQALALTPEPDSPTTTDPDAAASATETATR
    DQLTKEAFQNPDNQKVNIDELGNAIPSGVLKDDVVANIEEQAKAAGEEAKQQAIENNAQAQKKYDEQQAK
    RQEELKVSSGAGYGLSGALILGGGIGVAVTAALHRKNQPVEQTTTTTTTTTTTSARTVENKPANNTPAQG
    NVDTPGSEDTMESRRSSMASTSSTFFDTSSIGTVQNPYADVKTSLHDSQVPTSNSNTSVQNMGNTDSVVY
    STIQHPPRDTTDNGARLLGNPSAGIQSTYARLALSGGLRHDMGGLTGGSNSAVNTSNNPPAPGSHRFV
  • Molecule Role : Protective antigen
  • Molecule Role Annotation : Mice immunized intranasally with recombinant Tir protein had a survival rate of 92.9% after challenge with EHEC 0157:H7 (Fan et al., 2011).
  • Related Vaccine(s): E. coli O157:H7 subunit vaccine expressing Esps and Tir , Recombinant Tir Protein Vaccine
1. Ifng (Interferon gamma)
  • Gene Name : Ifng (Interferon gamma)
  • Sequence Strain (Species/Organism) : Mouse
  • NCBI Gene ID : 15978
  • NCBI Protein GI : 33468859
  • Genbank Accession : NM_008337
  • Protein Accession : NP_032363.1
  • Other Database IDs : MGI:107656; UniProt: P01580
  • Taxonomy ID : 10090
  • Gene Strand (Orientation) : ?
  • DNA Sequence : Show Sequence
    >gi|145966741|ref|NM_008337.3| Mus musculus interferon gamma (Ifng), mRNA
    ATAGCTGCCATCGGCTGACCTAGAGAAGACACATCAGCTGATCCTTTGGACCCTCTGACTTGAGACAGAA
    GTTCTGGGCTTCTCCTCCTGCGGCCTAGCTCTGAGACAATGAACGCTACACACTGCATCTTGGCTTTGCA
    GCTCTTCCTCATGGCTGTTTCTGGCTGTTACTGCCACGGCACAGTCATTGAAAGCCTAGAAAGTCTGAAT
    AACTATTTTAACTCAAGTGGCATAGATGTGGAAGAAAAGAGTCTCTTCTTGGATATCTGGAGGAACTGGC
    AAAAGGATGGTGACATGAAAATCCTGCAGAGCCAGATTATCTCTTTCTACCTCAGACTCTTTGAAGTCTT
    GAAAGACAATCAGGCCATCAGCAACAACATAAGCGTCATTGAATCACACCTGATTACTACCTTCTTCAGC
    AACAGCAAGGCGAAAAAGGATGCATTCATGAGTATTGCCAAGTTTGAGGTCAACAACCCACAGGTCCAGC
    GCCAAGCATTCAATGAGCTCATCCGAGTGGTCCACCAGCTGTTGCCGGAATCCAGCCTCAGGAAGCGGAA
    AAGGAGTCGCTGCTGATTCGGGGTGGGGAAGAGATTGTCCCAATAAGAATAATTCTGCCAGCACTATTTG
    AATTTTTAAATCTAAACCTATTTATTAATATTTAAAACTATTTATATGGAGAATCTATTTTAGATGCATC
    AACCAAAGAAGTATTTATAGTAACAACTTATATGTGATAAGAGTGAATTCCTATTAATATATGTGTTATT
    TATAATTTCTGTCTCCTCAACTATTTCTCTTTGACCAATTAATTATTCTTTCTGACTAATTAGCCAAGAC
    TGTGATTGCGGGGTTGTATCTGGGGGTGGGGGACAGCCAAGCGGCTGACTGAACTCAGATTGTAGCTTGT
    ACCTTTACTTCACTGACCAATAAGAAACATTCAGAGCTGCAGTGACCCCGGGAGGTGCTGCTGATGGGAG
    GAGATGTCTACACTCCGGGCCAGCGCTTTAACAGCAGGCCAGACAGCACTCGAATGTGTCAGGTAGTAAC
    AGGCTGTCCCTGAAAGAAAGCAGTGTCTCAAGAGACTTGACACCTGGTGCTTCCCTATACAGCTGAAAAC
    TGTGACTACACCCGAATGACAAATAACTCGCTCATTTATAGTTTATCACTGTCTAATTGCATATGAATAA
    AGTATACCTTTGCAACC
  • Protein Sequence : Show Sequence
    >gi|33468859|ref|NP_032363.1| interferon gamma [Mus musculus]
    MNATHCILALQLFLMAVSGCYCHGTVIESLESLNNYFNSSGIDVEEKSLFLDIWRNWQKDGDMKILQSQI
    ISFYLRLFEVLKDNQAISNNISVIESHLITTFFSNSKAKKDAFMSIAKFEVNNPQVQRQAFNELIRVVHQ
    LLPESSLRKRKRSRC
  • Molecule Role Annotation : IFN-gamma plays a critical role in Th1 type immune response. It is important for protection against infections by various viruses and intracellular bacteria.
  • Additional Molecule Role : Vaximmutor
  • Additional Molecule Role Annotation : The experimental data demonstrated that three time vaccinations with BCG in BALB/c mice induced strong TB Ag-specific IFN-gamma immune responses in splenocytes (Wang et al., 2009).
  • Related Vaccine(s): E. coli IreA protein vaccine
2. IL-17
  • Gene Name : IL-17
  • Sequence Strain (Species/Organism) : Mus musculus
  • NCBI Gene ID : 16171
  • NCBI Protein GI : 6754324
  • Genbank Accession : AC159614
  • Protein Accession : NP_034682
  • Taxonomy ID : 10090
  • Chromosome No : 1
  • Gene Starting Position : 20730904
  • Gene Ending Position : 20734495
  • Gene Strand (Orientation) : +
  • Protein Name : interleukin 17A
  • Protein pI : 9.13
  • Protein Weight : 16001.99
  • Protein Length : 158
  • Protein Note : Also known as Il17; Ctla8; IL-17; Ctla-8; IL-17A
  • DNA Sequence : Show Sequence
    >gi|372099109:20730904-20734495 Mus musculus strain C57BL/6J chromosome 1, GRCm38 C57BL/6J
    CATCCACCTCACACGAGGCACAAGTGCACCCAGCACCAGCTGATCAGGACGCGCAAACATGAGTCCAGGG
    AGAGCTTCATCTGTGGTGAGTCCTGCACTAATGTACAAGGCGCTTGTTGATTGTGACCAGGTTGCGTTAT
    TGCACGTGATATGAAATGCTCTATTCCAGCTGTTGGGGTCCATGAATCTGTACATGTAGAACTGGAAATG
    AAACCTTTGGTAGATGTCGAAATCATTGTACAGCATTTTCAAGAACTGATAGGCATCAGTCAGAAAGATA
    CGGTTAAAACTGAAGGGTTGCTGTGATGAAACTAACCCACTAAGAAATGTCACATGACGCTATGCAATGA
    GAAAGACTGTCAAAATCTATTCTTCTGAGTGCAAGGGATTTGACGTCATTCTCTCATGTCAGTGCTCTTT
    AATCCAGAATGAAGTGGGCTACTGTTCTTGCAGATTTGAAAGCTTTAGAAGCAAGTTTTCATCCATTGCT
    TTATCCCAAAGTCTTAGGATATCCAAACTATTAGATACATGTATAAGTCTCCTTATGAATAAAGCTTTAT
    ATATTTTAAATACTTAACCTAAAAAATATGCTCTGCACTCGTATTCTCATGATAGAATCAATGCATGCTA
    AATTTAGAACCGGATAATATATACCTAAGAAAACATGAGGGAGGTTCAGTTTCTATCTGGAGGATAGCTG
    GTGTACAAACACTGTTTCTAATTCTAACATGAGTGCCGACAAACAACGGGTAGGTTTTCTGCAGTCCTCT
    CCTCCAAGGTACATGTTTGACTGTGCACGAGGTTTACAGAAGGAGTGACTAAGAACACTAGTGCATAAGG
    ACAAGAAAATCGGGGTCATTCAGCAGCCCACTGACTCATGAGCTAACAGGCTGAGGAGATGGCAGAAGCT
    GACATTTTTATTAGGACCACTGCTGTCTAAGACATCACATGATTGTCCTCAGTCACAAAAAGAATGTAAG
    AAACTGGTTAAAAATAAAATAAATTCTACATTTTTTAGCATGATTTTGGCCATCTTAAAGTTTTTAAATT
    CAGAATTACTTACATATTAGGAGAGATCTTTCCAAAATATCATATGTTTCCTACAGTTAGTTATATACTC
    ATCACAATGAGTTTGTCAGAAAGAAAAGCAGATACTAATCCAATCCCCCATCACCTTATCTTTCCCTTCT
    AGTCTCTGATGCTGTTGCTGCTGCTGAGCCTGGCGGCTACAGTGAAGGCAGCAGCGATCATCCCTCAAAG
    CTCAGCGTGTCCAAACACTGAGGCCAAGGACTTCCTCCAGAATGTGAAGGTCAACCTCAAAGTCTTTAAC
    TCCCTTGGCGCAAAAGTGAGCTCCAGAAGGCCCTCAGACTACCTCAACCGTTCCACGTCACCCTGGACTC
    TCCAGTACGTAAGAACTCCAGACAAAATAATCTGTGTCCTTCCATTCTCTGATGCACCATGTATACCCTA
    AACATGATTTTTCACTTTTTTCCTCTCAGTATCCTCAGAGACCTAGAAGGTCCATTGTGTTAAGCAAAGT
    TTCCTCTACAGAGTTCTTGGATAGAGCAGGGAATACTTCCCCCTAACCTGTTATAGTGGTCAATAATGAG
    AGAGATCAACCCAAATTATTGATAACCATGATTCTAGCATGAGAGCTCAAGTTGAATGCTGACTTTTTTG
    GAAATCAGGATGTTTATGTTTCAACCAGACCTACAATTAAAGAGACTTGATGAAAAATAATTAATAACTA
    ACTAGGTATTTTTGTGTCTGACCTGAAGAAGACATAGGAAAACAAAATTTGAATGGCTGGTAGAGGAAGC
    ATCCTGCTGGATATGTTTTCTCCTTTGTGAGTTGGATAGACTTGACCTCCATCCCAAGCCCTTTTTTACT
    TGACCTGTCTCTGGCATACACTATTTAGACCCCATAAAGGGCTCAGTACTTTGATCATTTGAGGTTATAT
    GAATAAATTTCAATGGCAAGGAACCTGTGGAGCCACCTGTCTATAGGATTTTTCTCCTTTTTCCAAAACC
    AAGGATAATTCAATCAATCAATTCAAAAATCTAAGTGAACTATTTATTCAGATATTGTAAAGGGACAAGA
    AAGAGATTATAAAGGGACTTTTGTTGTTGCTTCTAGCTTTTCATATAACTTCCGTCCCAGGAAGTGTTCT
    CAGATATAATTCTGATATTCCTTCTTTCAAAGACCAATGTCACCAAATCAGATGAACAGCCATTTTACTC
    CTTGGTCATCTGTCCCTTTGTTGTCTCCTGTCAATCAAATGTACCCTTAAAATTTATCTTTTTTTTTTTT
    ATGTTATCTACTTGATGTTAAGTTTCAATCCTCACCTCACTATGGTCTTTAGCTTATTCTGTTTATCTTT
    CAAAAAGCATTCTTCTAAATCATTTCCTAAACTTTAAAATTCAAGTTTGTGAAGCTTCAGGTCCAGTTCC
    ATGATGGAATGGGTGTCCATCATGTGGAAGACACTGGCTTTGATCCTTATTGCTGCGAAAGAGGAGGAGG
    GAGAAAATGAGGAATCCGGGAGGAAAAGATAGAAAGGGGAGAATCTAAATTTTCAGACAAGCCAAAGTTA
    GCAACTAACATGCAGAGCTTTGCAGTGCACATGTGTGTCACAGTGCGTTCTTCCTCCCTCCCCCGTTCCT
    GCTTTTCCTTCCACTTAAGCAGGACTTCATTTCCTCCTGGCTTTTGTCTCCCCTGCAGCCGCAATGAAGA
    CCCTGATAGATATCCCTCTGTGATCTGGGAAGCTCAGTGCCGCCACCAGCGCTGTGTCAATGCGGAGGGA
    AAGCTGGACCACCACATGAATTCTGTTCTCATCCAGCAAGAGATCCTGGTCCTGAAGAGGGAGCCTGAGA
    GCTGCCCCTTCACTTTCAGGGTCGAGAAGATGCTGGTGGGTGTGGGCTGCACCTGCGTGGCCTCGATTGT
    CCGCCAGGCAGCCTAAACAGAGACCCGCGGCTGACCCCTAAGAAACCCCCACGTTTCTCAGCAAACTTAC
    TTGCATTTTTAAAACAGTTCGTGCTATTGATTTTCAGCAAGGAATGTGGATTCAGAGGCAGATTCAGAAT
    TGTCTGCCCTCCACAATGAAAAGAAGGTGTAAAGGGGTCCCAAACTGCTTCGTGTTTGTTTTTCTGTGGA
    CTTTAAATTATTTGTGTATTTACAATATCCCAAGATAGCTTTGAAGCGTAACTTATTTTAATGAAGTATC
    TACATTATTATTATGTTTCTTTCTGAAGAAGACAAAATTCAAGACTCAGAAATTTTATTATTTAAAAGGT
    AAAGCCTATATTTATATGAGCTATTTATGAATCTATTTATTTTTCTTCAGTATTTGAAGTATTAAGAACA
    TGATTTTCAGATCTACCTAGGGAAGTCCTAAGTAAGATTAAATATTAATGGAAATTTCAGCTTTACTATT
    TGTTTATTTAAGGTTCTCTCCTCTGAATGGGGTGAAAACCAAACTTAGTTTTATGTTTAATAACTTTTTA
    AATTATTGAAGATTCAAAAAATTGGATAATTTAGCTCCCTACTCTGTTTTAAAAAAAAATTGTAACAATA
    TCACTGTAATAATAAAGTTTTG
  • Protein Sequence : Show Sequence
    >gi|6754324|ref|NP_034682.1| interleukin-17A precursor [Mus musculus]
    MSPGRASSVSLMLLLLLSLAATVKAAAIIPQSSACPNTEAKDFLQNVKVNLKVFNSLGAKVSSRRPSDYL
    NRSTSPWTLHRNEDPDRYPSVIWEAQCRHQRCVNAEGKLDHHMNSVLIQQEILVLKREPESCPFTFRVEK
    MLVGVGCTCVASIVRQAA
  • Molecule Role : Vaximmutor
  • Related Vaccine(s): E. coli IreA protein vaccine
3. IL-6
  • Gene Name : IL-6
  • Sequence Strain (Species/Organism) : Mus musculus
  • NCBI Gene ID : 16193
  • NCBI Protein GI : 13624311
  • Genbank Accession : AC112933
  • Protein Accession : NP_112445
  • Taxonomy ID : 10090
  • Chromosome No : 5
  • Gene Starting Position : 30013160
  • Gene Ending Position : 30019967
  • Gene Strand (Orientation) : +
  • Protein Name : interleukin 6
  • Protein pI : 7.5
  • Protein Weight : 23291.86
  • Protein Length : 211
  • Protein Note : Also known as Il-6
  • DNA Sequence : Show Sequence
    >gi|372099105:30013160-30019967 Mus musculus strain C57BL/6J chromosome 5, GRCm38 C57BL/6J
    ACCAAGAACGATAGTCAATTCCAGAAACCGCTATGAAGTTCCTCTCTGCAAGTAAGTGAAGGCAGTTCCT
    TGCCCTCTGGCGGAGCTATTGAGACTGTGAGAGAGGAGTGTGAGGCAGAGAGCCAGCATTGTGGGTTGGC
    CAGCAGCCATCAGCTAGCAGCAGGCGCCCAACTGTGCTATCTGCTCACTTGCCGGTTTTCCCTTTTCTCC
    ACGCAGGAGACTTCCATCCAGTTGCCTTCTTGGGACTGATGCTGGTGACAACCACGGCCTTCCCTACTTC
    ACAAGTCCGGAGAGGAGACTTCACAGAGGATACCACTCCCAACAGACCTGTCTATACCACTTCACAAGTC
    GGAGGCTTAATTACACATGTTCTCTGGGAAATCGTGGAAATGAGAAAAGAGGTGGGTAGGCTGTGAAACT
    GATGAAGACCCAGTGTGGGCGTCCATTCATTCTCTTTGCTCTTGAATTAGAAATTCTCTGCTGGGATCTA
    GGGCCCTTAGGATTTGAAGCTAAAGGTCAGACTAGACTGTGTTCTCTCTTTCTCACCTCTTTGCTGGTTT
    TGAGTGGAGGTTGGGAAGGGGTTCCTTTCCTGTCTGGAAGATACAGAATGTGACTGCATTTCTAGAAAAT
    TCACAGTGGGCCATTCTCTGTTCCAATTTAGCTATTGCTTCTTAGGTGGGGATTCCTTTTCCCTCATTAT
    TCCTTTTTCCTTATCTCTTTGCCTTCATTTATCCCTTGAAGTCTACAAGGACCAGAAAGTGCTTTTTGGC
    TGAATGTAGTAAGTTCTGTGTGTGTGAAATCAGGATGCTCTAGGGTCAGCCCAGATAAGATGCATATTGT
    ATAGAGCCCAATAAAGTGCTAACACACACACACACACACACACACACACACAACCTAGATTAGGCTGGGC
    ATGGTGGTGGATGCCTCCCAGCACTTGGGAGGCACACGCAGGAAGATCTCTGTGAGTTAGAGGCCAGCTT
    GGTCTACATATTGAGTTCCAGGATATCCAAGACTACATTGAGAGATCCTTTCTCAAAAAAAAAAAAAAAA
    AAAAAAAAACAACAACAACAAACAAACAAACAAACAAGAAAAAAAAAACCCAACCAACCCTACCTAGATT
    AAAATATCTCCCATCTTTAAATGAAAAGTATTTTGACTCTGCTTGACAGAAAGGAAAAAAAAAATCACAA
    ACAAGATTAATAGCCTAGGTCTGGGTGTGTAGAACCAACTTTGTAATCTTGGGAAAATCCTCAACTATTT
    AGTACTCTTTATCTGCATAATTATGGAGTTACAGATAATGGCACAGACCCTTCCAGATGGAATATTCTGT
    GACTTAAATTTATTTGCCCCAAGATATCATCAAAATTTCTGTCCTTTACCAAGTTCCTACTCTATGCTGG
    GCAGTTTTTATCGTTGAATCCTTGAGACAAATGTATAAGAGGGACATCAATAATTCTTTATTGAAACATA
    GGAAATACTTAGGAGAGTAACAAGCTTAAAGCCAAGGGACTGAGCCTAAGGGTGCATTTTTATTTATTGG
    GCTGCTTAGTAGGGTTCTAAGAAGGTATAGCTTCCCTTTTCTGTGTCCTGGCTATGAAAGAGCATGACTT
    GGCCCTCTAGTGGTGCTTGTTGTAAGAGGTGTTTAAGTGATTGCTCTGGTAATCTTTTGCAGTTGTGCAA
    TGGCAATTCTGATTGTATGAACAACGATGATGCACTTGCAGAAAACAATCTGAAACTTCCAGAGATACAA
    AGAAATGATGGATGCTACCAAACTGGATATAATCAGGTAGAAACTTGTCACGTTTACTTTCAACAATTCT
    TCAAGGTTCTCTCTTGCACGTGATACCTGCATTTGTACAGTCCCAGTCAGGCAACAAAGATGGGGGGATA
    CATCCAATACCACTTGGATGTAACTGGCCTGCAGTAGCTTGAATACAAAAGGAGATTGAGAGGTACCTCA
    GCAGCTGCTAGGGTGAGGGAAAGTTTACCAACCAGTGCTATAAATGTTCACTCAATCTATGTCCATCAGG
    AGCTAAATGTTTAAAGTCTCTATTCTCATCTTGGCTTTGAGGTGTTAGATGATTAAAAAAAAAACATTTT
    TTTTGTCTAAAAAAGTGGAAGAGTAGATATAAAACATGTTATGTAAACGTCATGAGGAAAGTAACTTACA
    GATTTAATTAAAAAGCAGTTTATTTAAACAGGTAAAGGCCCACTATGCTGGGATTCTTCACCACTGTTAA
    ATGTTAGAAGTCATAGCAAGTTTAGCTAGTTCATGAGCCATCTCTTCTCTGGCTGCCCCTGGAAGGATCC
    AGGCCTACACTCCCTACTGAGAACACTCTTCACACCCCTCTCCTTCCAGCCGGTGAGATAGTCTACATCA
    GGTCTCAGGACAAGTCAGACAAGAACAAGAGTACAGGAAGGGCACTGCAGGATAGAAGGGAAGGAGTGAG
    GGTCAGAAGTGGATTCCCACTGCCACACTCTGGGGTAGGGGGTGGGGGGATATTAAGTGGTGCCTCTCTC
    TACTTGTCCAGATAATTCAGGAGGTCAGCTGATGCTGCCTGTTGTCTAATTCTGTAGAAGATACTGAACA
    GCAGGAATCTTTTTTTCAATTTTTTATTAGATATTTTCTTCATTTACATTTCAAATGCTATCCCCACAGT
    CCCCTATACCCTCCCCCCCCTCCCCGCTCCCTTACCCACCAACTCCCACTTCTTGGCCCTGGCATTCCCC
    TGTACTGGGGCATATAAAGTTTGCAAGACCAAGGGGCCTCTATTCCCAATGATGGCTGACTAGGCCATCT
    TCTGCTACATATGCAGCTAGAGATATGAGCTCTGGGGGTACTGGTTAGTTCATATTGTTGTTCCACCTAT
    AGGGTTGCAGACCCCTTCAGCTCCTTGGGTACTTTCTCTAGCTCCTCCATTGGGGGCCCTGTGTTCCATC
    CAATAGAAGACTGTGAGCATCCACTTTTTGCCAGGCATTGGCCTAGCCTCACACGAGACAGCTATATCAG
    GGTCCTTTCAGCAAAATCTTGCTGGTATATGCAATACTGTCTGGGTTTGGTGGCTGATTATGGGATGGAT
    CCCTAGGTGGGGTAGTCTCTGGATCTTCCATCCTTTTGTCTTAGCTCCAAACTTTGTCTCTGTAACTCCT
    TCCATGGGTATTTTGTTCCCCATTCTAAGGAGGAATGAAGTATCCACATGTTGGTCTTCCTTCTTCTTGA
    TTTTCTTGTGTTTTGGAAATTGTACCTTGGGTATTCTAAGTTTCTGGGCTAATATCCACTTATCAGTGAG
    TGCATATCAAGTGACTTCTTTTGTGATTGGGTTACCTCACTAAGGATCATACTCTCCAGATACATCCATT
    TGACCAAGAATTTCATAAATCCATTGTTTTTAATAGCTGAATAGTACTCCATTTGTAAATGTACCACATT
    TTCTGTATCCATTCCTCTGTTGAGGGACATCTGGGTTCTTTCCAGCTTCTGGCTATTATGAATAAGGCTG
    CTATGAACATAGTGGAGCATATGTCCTTATTACCAGTTGGAACATCTTCTGCGTATATGCCCAGAAGAGG
    TATTGCTGGATCTTCCGGTAGTACTATGTCTAATTTTTTGAGGAACAGCCAGACTGATTTCCAGAGTGGT
    TATACAAGCTTGCAATCCCAACAGCAATGGAGGAGTGTTCCTCTTTCTCCACATCCTTACCAGCATCTGC
    TGTCACCTGAATTTTTGATCTTAGCCATTCTGACTGGTGTGAGGTGGAATCTCAGGGTTGTTTTGATTTG
    CATTTCCCTGATGATTAAGGATGTTGAACATTTTTTCAAGTGCTTCTCAGCCATTCAGTATTCCTCAGTT
    GAGAATTCTTTGTTTAGCTTTGTACCCCATTTTTAATGGGGTTATTTGAATTTCTGGAGTTCAGCTTCTT
    GAGCTCTTTGTATATATTGGATATTAGTCCCCTATCAGATTTAGGATTGGTAAAAATCCTTTCCCAATCT
    GTTGGTGGCCTTTTTGTCTTATTGACAGTGTCTTTTCCCTTACAGAAGCTTTGCAATTTTATGAGGTCCC
    ATTTGTCGATTCTCGATTTTACTGTACAAGCCATTGCTGTTCTGTTCAGGAATTTTTCCCCTGTTCCCAT
    ATCTACGAGGGTTTTTTTCCCACTTTCTCCTCTATAAATTTCAGTGTCTCTGGTTTTATGTGGAGTTCTT
    TGATCCACTTAGACTTGAGCTTTGTACAAGGAGATAAGAATGGATCAATTCGGGCTGGAGAGATGGCTCA
    GTGGTTAAGAGCACTGACTGCTCTTTCAGAAGTCCTGAGTTCAAATCCCAGCAACCACATGGTGGTTCAT
    AACCATCTATAATAAGATCTGATGTCCTTTTCTGGTGTGTCTGAAGACAGCTACAGTGTACTTACATGTA
    ATAAATAAATAAAACTAGATTATTTAAAAAAAAAAAAAAAGAATGGATCAATTCACACTCTTCTACATGA
    TAACCACCAGTTGAGCCCGCACCAATTGTTGAAAATGCTCTCTTTTTCCCACTGGATGGTTTTAGCTCCC
    TTGTCAAAGATCAAGTGACCATAAGTGTGTGGGTTCATTTCTGTGTCTTCAATTGTGTTCCATTGATCTA
    CCTGTCTGTTGCTGTATCAATACCATGCAGTTTTTTTTATCACAATTGCTCTGTAGTACAGCTTGAGGTC
    AGGCATGGTGAGTCCACCAGAGGTTCTTTTATTGTTGAGAATAGTTTTTGCTATCCTAGTTTTTTTTTTT
    TTTTTTTTTTGAACAGCAGGAATCTTATTCTCAAATTGAATCTATTCCTAGAAAGAACTGACTTCCTTTT
    CCATTTTACTTATAGGAAATTTGCCTATTGAAAATTTCCTCTGGTCTTCTGGAGTACCATAGCTACCTGG
    AGTACATGAAGAACAACTTAAAAGATAACAAGAAAGACAAAGCCAGAGTCCTTCAGAGAGATACAGAAAC
    TCTAATTCATATCTTCAACCAAGAGGTGAGTGCTTCCCCATCTCTCATGCAGTGTGGGAAAGAGGACACC
    CGGCACCTCAGGGTAGCGGCACTTTTTCCAGACAGCTGCTCAGAAGGGAGAGAGTCTGAACAACAGTTCT
    TGATTATAAGGCCTTGCTTTGTTTTACTTTGGGGTTTTGTTTGAGGTTCTCTTTTGCAAAGAACATCAAT
    ACCTGCTTTAAACTGTATTAATAGAATGTTACTAATTGCGTAAGAGGTATGAAAACTATGACAGCCATAC
    ATAGTCACCCATTATGAGAGCACAGAGACAAAAGTGACTTTAATATTTAATCCTTGGCAAGTGACATTTT
    TGTAACCAGAGTTCTAATGCAGAGAAGTAGCCAAAAGCTAAAATGTCAGGGAAGGAAGGGATCAAGGGCT
    TCTGGCTACCATTAGCCAGAAGAATGGTAGATATGGAGGATTAATGACTCAGAGTGTGGGCGAACAAAGC
    CAGATGCAATAAGAAGGGCCTGGAATGAAACCCTCTTGCTAAGGCTGCTTTTGCCACTTGTAGTTTCTTG
    CCTTAAACCAGAGAGTTTCCCAATTTAATGTGCACAGGAACCACTTAGGGTCTTGTTCCAGCAGGGTCTT
    ACTTAGGAGGTCTAGGAAGGGAACTAAGATTCATTTTTGTAAACAGCTGCTTGTTTATGACCCTGCTATA
    TAGTATTCAGGCTCCTAAGTAGTGGGGCAAGCCTTCCAGTTAGTCTTCCCCATGCCAGTGGGCCCATGGA
    AGGGTGTTTCCAGACTTCTTCATGCTACCACACTAAGAGACTCTCAACAGAGTCTGAATGGAAACCACGA
    AGGAACACATTTGTTTTAGATTCCTCTGTGCCACCTTTACTGATGGGAGCTTCTGTTTTCCAGTAGAATA
    CAGTATGTTAGCATGGATGCTTGGATAACAGACAAATAAGATGGTGGTGCTGACCTCTGGACGCTTACTC
    TCTAGTGGCAGACAGAACAGTAAGGTTAGAATTCTGTTGCTATTAAAAAACTAATAATAATCACCTTGAA
    AAAGAATGGAGTTGTTAGGCATGGGTCTCTCTCGAGTAAGCTTGGAACAAAAGCATCTCCCCTGGCTTGG
    GTGAGTCAAAGCAGATGGACTTAGCTCGTCTCATTCATTCTAAATTAGAACTTCTTCCCACAGCCCAGAA
    CACGCCACAAGAAAAAAAAAATGTGCAATATTTAACCAGTCTTTGTTTTTTCCTCCTTTAGGTAAAAGAT
    TTACATAAAATAGTCCTTCCTACCCCAATTTCCAATGCTCTCCTAACAGATAAGCTGGAGTCACAGAAGG
    AGTGGCTAAGGACCAAGACCATCCAATTCATCTTGAAATCACTTGAAGAATTTCTAAAAGTCACTTTGAG
    ATCTACTCGGCAAACCTAGTGCGTTATGCCTAAGCATATCAGTTTGTGGACATTCCTCACTGTGGTCAGA
    AAATATATCCTGTTGTCAGGTATCTGACTTATGTTGTTCTCTACGAAGAACTGACAATATGAATGTTGGG
    ACACTATTTTAATTATTTTTAATTTATTGATAATTTAAATAAGTAAACTTTAAGTTAATTTATGATTGAT
    ATTTATTATTTTTATGAAGTGTCACTTGAAATGTTATATGTTATAGTTTTGAAATGATAACCTAAAAATC
    TATTTGATATAAATATTCTGTTACCTAGCCAGATGGTTTCTTGGAATGTATAAGTTTACCTCAATGAATT
    GCTAATTTAAATATGTTTTTAAAGAAATCTTTGTGATGTATTTTTATAATGTTTAGACTGTCTTCAAACA
    AATAAATTATATTATATT
  • Protein Sequence : Show Sequence
    >gi|13624311|ref|NP_112445.1| interleukin-6 precursor [Mus musculus]
    MKFLSARDFHPVAFLGLMLVTTTAFPTSQVRRGDFTEDTTPNRPVYTTSQVGGLITHVLWEIVEMRKELC
    NGNSDCMNNDDALAENNLKLPEIQRNDGCYQTGYNQEICLLKISSGLLEYHSYLEYMKNNLKDNKKDKAR
    VLQRDTETLIHIFNQEVKDLHKIVLPTPISNALLTDKLESQKEWLRTKTIQFILKSLEEFLKVTLRSTRQ
    T
  • Molecule Role : Vaximmutor
  • Related Vaccine(s): Escherichia coli rfaL mutant vaccine
4. K88AB
  • Gene Name : K88AB
  • Sequence Strain (Species/Organism) : Sus scrofa
  • NCBI Gene ID : 449290
  • Taxonomy ID : 9825
  • Gene Strand (Orientation) : ?
  • Molecule Role Annotation : K88AB contributes to phenotypic expression of anti-K88 E. coli IgG levels.
IV. Vaccine Information
1. APEC vaccine using GST-Iss fusion protein
a. Tradename:
None
b. Vaccine Ontology ID:
VO_0000454
c. Type:
Subunit vaccine
d. Antigen
APEC protein ISS fused to glutathione S-transferase (GST) (Lynne et al., 2006).
e. Gene Engineering of Iss
  • Type: Recombinant protein preparation
  • Description: Iss fusion proteins were produced for administration as a vaccine (Lynne et al., 2006).
  • Detailed Gene Information: Click here.
f. Preparation
Purification of GST-Iss was achieved by using an affinity matrix. Various doses of GST-Iss were then added to a water-in-oil emulsion (Lynne et al., 2006).
g. Virulence
Not noted.
h. Description
Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is a major problem for the poultry industry in the United States resulting in significant annual losses. One of the problems in colibacillosis control is that no single bacterial trait has been identified that can be used as an identifier of virulent avian isolates or as a target of control strategies. Previous work showed that complement resistance may play an important role in APEC virulence, and the increased serum survival gene or iss, which is associated with E. coli complement resistance was found significantly more often in APEC than it was in the E. coli isolates of apparently healthy birds. This strong association between iss and APEC suggested that iss-centric strategies might be useful in colibacillosis control (Lynne et al., 2006).
i. Chicken Response
  • Host Strain: 2-wk-old leghorn chickens obtained from Charles River Laboratories (Boston, MA).
  • Vaccination Protocol: One hundred twenty-eight chickens were divided into eight groups of 16. Birds were placed in stainless steel HEPA-filtered negative-pressure isolators 1 wk before vaccination. Each bird was given 0.5 ml of a water-in-oil emulsion containing either 50 μg, 10 μg, or 2 μg of GST-Iss per dose. At 3 wk of age, each chicken in groups 1A, 1B, 2A, 2B, 3A, and 3B received a 0.5-ml dose of the vaccine. Birds in groups 4A and 4B were not vaccinated (nonvaccinated controls). The injections were given in the back of the neck at the midpoint between the head and body (Lynne et al., 2006).
  • Persistence: Not noted.
  • Immune Response: Birds that received a higher dose of GST-Iss had average antibody titers of 10,000 to 100,000 against GST-Iss, whereas birds that received a lower dose had average titers of 1000 (Lynne et al., 2006).
  • Side Effects: Not noted.
  • Challenge Protocol: Four weeks following vaccination, each bird was subjected to challenge with an APEC strain. Each bird in each group was given a 1.0-ml i.m. injection of either 108.72 CFUs of APEC-C-O2 or 108.89 CFUs of APEC-C-O78. Birds were observed for 14 days following challenge. Birds that died were necropsied and observed for lesions consistent with colibacillosis; cultures of bone marrow were taken for bacterial isolation on eosin methylene blue agar (Lynne et al., 2006).
  • Efficacy: Birds immunized with GST-Iss were able to produce antibody titers against GST-Iss and Iss that were significantly different from unimmunized controls. Also, Iss did stimulate an immunoprotective response against heterologous challenge. Paradoxically, lower doses seemed to offer better protection than did higher doses, a result that could not be accounted for (Lynne et al., 2006).
  • Description: Iss, the protein encoded by the iss gene, might be useful as an immunogen capable of eliciting a protective response against APEC infection in birds. If Iss could stimulate an immunoprotective response in birds, it might have wide-ranging benefits, because iss is found in APEC of many serogroups and in APEC isolated from various lesion types, avian host species, and forms of colibacillosis. This widespread distribution of iss among APEC suggests that an Iss-based vaccine could provide broad protection to birds against heterologous APEC challenge. Computer analysis of Iss' predicted amino acid sequence has suggested that many portions of Iss are antigenic, and Iss is thought to be exposed on the bacterial surface in intact E. coli, meaning that it is accessible to the host's immune system. Such observations suggest that Iss may have the ability to evoke an immunoprotective response in birds against APEC that would have wide application. GST was selected as a fusion partner in an effort to elicit a stronger immune response (Lynne et al., 2006).
2. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Clostridium Perfringens Type C-Escherichia Coli Bacterin-Toxoid (USDA: 4570.20)
a. Manufacturer:
Pfizer, Inc., Novartis Animal Health US, Inc.
b. Vaccine Ontology ID:
VO_0002018
c. Type:
Inactivated or "killed" vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Cattle
3. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Clostridium Perfringens Type C-Escherichia Coli Bacterin-Toxoid (USDA: 4570.22)
a. Manufacturer:
Pfizer, Inc.
b. Vaccine Ontology ID:
VO_0002019
c. Type:
Inactivated or "killed" vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Cattle
4. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Clostridium Perfringens Types C & D-Escherichia Coli Bacterin-Toxoid (USDA: 4575.20)
a. Manufacturer:
Intervet Inc.
b. Vaccine Ontology ID:
VO_0002020
c. Type:
Inactivated or "killed" vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Cattle
5. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Escherichia Coli Bacterin (USDA: 4585.20)
a. Manufacturer:
Pfizer, Inc.
b. Vaccine Ontology ID:
VO_0002021
c. Type:
Inactivated or "killed" vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Cattle
6. Bovine Rotavirus-Coronavirus Killed Virus Vaccine-Escherichia Coli Bacterin (USDA: 4585.22)
a. Manufacturer:
Pfizer, Inc.
b. Vaccine Ontology ID:
VO_0002022
c. Type:
Inactivated or "killed" vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Cattle
7. CVD 103-HgR- REPEC
a. Vaccine Ontology ID:
VO_0004721
b. Type:
Recombinant vector vaccine
c. Status:
Research
d. Host Species for Licensed Use:
Baboon
e. Preparation
Rabbit Enteropathogenic E. coli (REPEC), a member of the AEEC family. The C-terminal portion of intimin was delivered by the attenuated Vibrio cholerae vaccine strain CVD 103-HgR. To export intimin, a fusion was engineered with ClyA, a secreted protein from Salmonella enterica serovar Typhi (Keller et al., 2010).
f. Immunization Route
Intramuscular injection (i.m.)
g. Rabbit Response
  • Vaccination Protocol: Three groups of six rabbits were primed on day 1 with one of three inocula: PBS, CVD 103-HgR (pSEC 91), or CVD 103-HgR (pInt248) and boosted on day 15 with the identical inoculum (Keller et al., 2010).
  • Vaccine Immune Response Type: VO_0003057
  • Challenge Protocol: Rabbits were challenged on day 29 with wild type REPEC strain E22 (6 × 107 CFU) (Keller et al., 2010).
  • Efficacy: After immunization, antibodies specific to intimin from serum and bile samples were detected and moderate protection against challenge with a virulent REPEC strain was observed. Compared to animals immunized with vector alone, intimin-immunized rabbits exhibited reduced fecal bacterial shedding, milder diarrheal symptoms, lower weight loss, and reduced colonization of REPEC in the cecum. V. cholerae CVD 103-HgR shows promise as a vector to deliver antigens and confer protection against AEEC pathogens (Keller et al., 2010).
8. Dukoral
a. Tradename:
Dukoral
b. Manufacturer:
SBL Vaccine, Sanofi Pasteur Ltd
c. Vaccine Ontology ID:
VO_0010710
d. Type:
Subunit vaccine + Inactivated or "killed" vaccine
e. Status:
Licensed
f. Location Licensed:
Canada
g. Host Species for Licensed Use:
Human
h. Immunization Route
Oral
i . Approved Age for Licensed Use
2 months and older.
j. Description
Products: Proteins + killed bacteria. Other components: Saccharin.
9. E. coli C3389 protein vaccine
a. Vaccine Ontology ID:
VO_0011417
b. Type:
Subunit vaccine
c. Status:
Research
d. Antigen
E. coli C3389
e. Gene Engineering of C3389
  • Type: Recombinant protein preparation
  • Description: The chromosomal DNA of 29 E. coli strains belonging to various phylogenetic groups was prepared using a standard molecular biology protocol (Promega). The membranes were hybridized with [α-33P]dCTP-radiolabeled DNA (Amersham Pharmacia Biotech, United Kingdom) overnight under stringent conditions (Durant et al., 2007).
  • Detailed Gene Information: Click here.
f. Adjuvant: Freunds emulsified oil adjuvant
g. Immunization Route
Subcutaneous injection
h. Mouse Response
  • Host Strain: BALB/c
  • Vaccination Protocol: Purified recombinant proteins were used to immunize groups of 6-week-old BALB/c@Rj mice (Janvier Laboratories, France). Each mouse was injected subcutaneously with 20 μg of recombinant protein emulsified in complete Freund's adjuvant (Sigma) on day 1. Three weeks later (day 21), the mice were given a boosting injection with 10 μg of recombinant protein emulsified in incomplete Freund's adjuvant. A control group was included in each experiment that consisted of mice injected on days 1 and 21 with PBS and adjuvant alone (Durant et al., 2007).
  • Challenge Protocol: Control and immunized groups of mice were challenged on day 42 by intraperitoneal injection of E. coli S26 at a dose that caused death in 50% of the mouse population (LD50) (5 × 105 CFU/mouse). The survival of mice was monitored for 2 days after challenge. The survival rate in the vaccinated group was compared to the one obtained in the control group (Durant et al., 2007).
  • Efficacy: Active immunization of BALB/c mice with recombinant E. coli protein C3389 antigen in Freund's adjuvant protects mice from lethal challenge with ExPEC strain S26 (Durant et al., 2007).
10. E. coli C4424 protein vaccine
a. Vaccine Ontology ID:
VO_0011442
b. Type:
Subunit vaccine
c. Status:
Research
d. Antigen
E. coli C4424
e. Gene Engineering of C4424
  • Type: Recombinant protein preparation
  • Description:
  • Detailed Gene Information: Click here.
f. Adjuvant: Freunds emulsified oil adjuvant
g. Immunization Route
Subcutaneous injection
h. Mouse Response
  • Host Strain: BALB/c
  • Vaccination Protocol: Purified recombinant proteins were used to immunize groups of 6-week-old BALB/c@Rj mice (Janvier Laboratories, France). Each mouse was injected subcutaneously with 20 μg of recombinant protein emulsified in complete Freund's adjuvant (Sigma) on day 1. Three weeks later (day 21), the mice were given a boosting injection with 10 μg of recombinant protein emulsified in incomplete Freund's adjuvant. A control group was included in each experiment that consisted of mice injected on days 1 and 21 with PBS and adjuvant alone (Durant et al., 2007).
  • Challenge Protocol: Control and immunized groups of mice were challenged on day 42 by intraperitoneal injection of E. coli S26 at a dose that caused death in 50% of the mouse population (LD50) (5 × 105 CFU/mouse). The survival of mice was monitored for 2 days after challenge. The survival rate in the vaccinated group was compared to the one obtained in the control group (Durant et al., 2007).
  • Efficacy: Active immunization of BALB/c mice with C4424 antigen in Freund's adjuvant protects mice from lethal challenge with ExPEC strain S26 (Durant et al., 2007).
11. E. coli CS3 in PLGA microspheres
a. Vaccine Ontology ID:
VO_0004262
b. Type:
Subunit vaccine
c. Status:
Research
d. Antigen
CS3 colonization factor isolated from enterotoxigenic Escherichia coli (ETEC) (Byrd and Cassels, 2006).
e. Adjuvant: DL-PGL (Polyester poly (DL-lactide-co-glycolide)) vaccine adjuvant
  • VO ID: VO_0001341
  • Description: PLGA microspheres
f. Immunization Route
intranasal immunization
g. Mouse Response
  • Host Strain: BALB/c
  • Vaccination Protocol: Four micrograms of CS3, 4 µg CS3 plus 2 µg mLT or 0·364 mg solid CS3-encapsulated PLGA microspheres (4 µg CS3 protein) were administered in a 10 µl volume drop-wise to the external nares of each mouse using a 2–20 µl Pipetteman (Ranin Instrument). Immediately prior to immunization, the vaccines were diluted with PBS to a concentration of 4 µg CS3 protein 10 µl–1. Control mice were likewise administered 10 µl PBS (Byrd and Cassels, 2006).
  • Immune Response: the CS3-loaded PLGA microspheres induced significantly greater (P<0.001) serum and mucosal antibody responses than native CS3 (Byrd and Cassels, 2006).
12. E. coli FimH with CFA and then IFA
a. Type:
Subunit vaccine
b. Status:
Research
c. Host Species for Licensed Use:
Mouse
d. Antigen
E. coli FimH (Langermann et al., 1997)
e. Gene Engineering of FimH from E. coli str. K-12 substr. MG1655
  • Type: Recombinant protein preparation
  • Description:
  • Detailed Gene Information: Click here.
f. Immunization Route
Intramuscular injection (i.m.)
g. Baboon Response
  • Vaccination Protocol: C3H mice were immunized with the various FimH vaccines and challenged with the NU14 clinical isolate 9 weeks after the primary immunization.
  • Challenge Protocol: Intraurethral inoculation of C3H mice with 5 × 107 type 1–piliated E. coli (strain NU14) resulted in a highly reproducible colonization of the mouse bladder (Langermann et al., 1997). Piliated bacteria persisted in the bladder for at least 7 days [104 colony-forming units (CFU)/bladder] and produced ascending infection into the kidney.
  • Efficacy: Vaccinated animals exhibited a 100- to 1000-fold reduction in the number of organisms recovered from the bladders as compared with adjuvant- or FimC-immunized controls (Langermann et al., 1997).
13. E. coli heat-labile enterotoxin B-subunit (LB-T) Vaccine
a. Vaccine Ontology ID:
VO_0004144
b. Type:
Subunit vaccine
c. Antigen
The antigen for this vaccine is a plant-optimized synthetic gene encoding for the E. Coli heat-labile enterotoxin B-subunit (LT-B) (Mason et al., 1998).
d. Preparation
DNA plasmids were created, and the expression cassettes were purified. Potato plants were transformed by the leaf disc cocultivation method. Transformed lines were analyzed, and the best lines were clonally propogated. These plantlets were transferred to soil and grown. The tubers produced were the vaccine (Mason et al., 1998).
e. Cattle Response
  • Vaccination Protocol: The authors used two independent transgenic lines of potato tubers, THllO-8 and THllO-51, and nontransformed tubers of line FL1607. Potato tubers were peeled and sliced before offering to mice as food. BALB/c mice were fasted overnight before feeding raw tuber slices. Tuber feedings were performed at weekly intervals for 3 weeks (days 0, 7 and 14). Mice were divided into four groups of five animals each. Each animal in Groups 1-3 received 5 g of FL1607, THllO-8 or THllO-51 tubers per feeding, respectively (Mason et al., 1998).
  • Immune Response: Mice that ingested three doses of transformed tubers developed anti-LT-B faecal IgA and anti-LT-B serum IgG antibody responses equivalent to or greater than responses developed by mice gavaged orally with 5 micrograms purified LT-B. THllO-51 tubers, in contrast to THllO-8 tubers or purified LT-B, produced significantly higher anti-LT-B faecal IgA responses when ingested by mice. Control mice that were fed nontransformed potatoes had no detectable anti-LT-B faecal IgA or anti-LT-B serum IgG responses (Mason et al., 1998).
  • Challenge Protocol: Mice were challenged by oral administration of 25 micrograms LT (heat-labile enterotoxin) (Mason et al., 1998).
  • Efficacy: Compared to mice that were fed non-transformed tubers, mice that were immunized by gavage with purified bacteria LT-B had the greatest reduction in gut/carcass ratio on subsequent challenge. Mice that were fed transformed potatoes had somewhat less but still a significant reduction in fluid. No mouse was completely protected. Control mice fed nontransformed potatoes developed no anti-LT-B faecal or serum antibodies (Mason et al., 1998).
14. E. coli Hma protein vaccine
a. Vaccine Ontology ID:
VO_0011443
b. Type:
Subunit vaccine
c. Status:
Research
d. Antigen
E. coli outer membrane receptor for iron compound or colicin (Hma)
e. Gene Engineering of Hma
  • Type: Recombinant protein preparation
  • Description: Genes encoding the selected antigens were PCR-amplified from CFT073 genomic DNA and cloned into either pBAD-myc-HisA (Invitrogen) or pET30b+ (Novagen). The six iron receptor vaccine candidates, ChuA, Hma, IutA, IreA, Iha, and IroN were expressed and purified as affinity-tagged recombinant proteins. Consistent with the predicted structure of these antigens, the CD spectrum of refolded purified Hma displayed a trough at 218 nm, which is characteristic of a β-sheet-rich conformation. The six purified protein antigens were each biochemically cross-linked to the adjuvant cholera toxin (CT) at a ratio of 10:1 (Alteri et al., 2009).
  • Detailed Gene Information: Click here.
f. Adjuvant: cholera toxin
g. Immunization Route
Intranasal
h. Mouse Response
  • Host Strain: CBA/J
  • Vaccination Protocol: Purified antigens were chemically cross-linked to cholera toxin (CT) (Sigma) at a ratio of 101 using N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) (Pierce) according to the manufacturer's recommendations. Peptide antigens were dissolved in 1 mM EDTA in PBS, mixed with reduced CT, and incubated at 4°C for 18 h. All immunizations were administered intranasally in a total volume of 20 µl/animal (10 µl/nare). Animals received a primary dose on day 0 of 100 µg crosslinked antigen (containing 10 µg CT) or 10 µg CT alone. Two boosts of 25 µg antigen (crosslinked to 2.5 µg CT) or 2.5 µg CT alone were given on days 7 and 14 (Alteri et al., 2009).
  • Challenge Protocol: The animals were transurethrally challenged with UPEC strain CFT073 and protection was assessed at 48 h post infection (hpi) by determining CFUs in the urine, bladder, and kidneys (Alteri et al., 2009).
  • Efficacy: A vaccine made by Hma from E. coli strain CFT073 and 536 induced protection to the infection of virulent strain CFT073 and 536, respectively, in the bladder in the CBA/J mice. (Alteri et al., 2009).
15. E. coli IreA protein vaccine
a. Vaccine Ontology ID:
VO_0011444
b. Type:
Subunit vaccine
c. Status:
Research
d. Antigen
E. coli iron-regulated outer membrane virulence protein (IreA)
e. Gene Engineering of IreA
  • Type: Recombinant protein preparation
  • Description: Genes encoding the selected antigens were PCR-amplified from CFT073 genomic DNA and cloned into either pBAD-myc-HisA (Invitrogen) or pET30b+ (Novagen). The six iron receptor vaccine candidates, ChuA, Hma, IutA, IreA, Iha, and IroN were expressed and purified as affinity-tagged recombinant proteins. Consistent with the predicted structure of these antigens, the CD spectrum of refolded purified Hma displayed a trough at 218 nm, which is characteristic of a β-sheet-rich conformation. The six purified protein antigens were each biochemically cross-linked to the adjuvant cholera toxin (CT) at a ratio of 101 (Alteri et al., 2009).
  • Detailed Gene Information: Click here.
f. Adjuvant: cholera toxin
g. Immunization Route
Intranasal
h. Mouse Response
  • Host Strain: CBA/J
  • Vaccination Protocol: Purified antigens were chemically cross-linked to cholera toxin (CT) (Sigma) at a ratio of 101 using N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) (Pierce) according to the manufacturer's recommendations. Peptide antigens were dissolved in 1 mM EDTA in PBS, mixed with reduced CT, and incubated at 4°C for 18 h. All immunizations were administered intranasally in a total volume of 20 µl/animal (10 µl/nare). Animals received a primary dose on day 0 of 100 µg crosslinked antigen (containing 10 µg CT) or 10 µg CT alone. Two boosts of 25 µg antigen (crosslinked to 2.5 µg CT) or 2.5 µg CT alone were given on days 7 and 14 (Alteri et al., 2009).
  • Challenge Protocol: The animals were transurethrally challenged with UPEC strain CFT073 and protection was assessed at 48 h post infection (hpi) by determining CFUs in the urine, bladder, and kidneys (Alteri et al., 2009).
  • Efficacy: Immunization with IreA protects against urinary tract colinization by E.coli CFT073 and reduces colinization by E.coli 536 in the bladder of CBA/J mice (Alteri et al., 2009).
  • Host Gene Response of Ifng (Interferon gamma)
    • Gene Response: Mouse splenocytes were measured for IFN-gamma and IL-17 production after vaccination but before challenge, and after challenge. Mice vaccinated with IreA produced significantly higher IFN-gamma levels than mice immunized with the adjuvant alone (CT vaccinated) both before and after challenge (Alteri et al., 2009).
    • Detailed Gene Information: Click here.
  • Host Gene Response of IL-17
    • Gene Response: Mouse splenocytes were measured for IFN-gamma and IL-17 production after vaccination but before challenge, and after challenge. Mice vaccinated with IreA produced significantly higher IL-17 levels than mice immunized with the adjuvant alone (CT vaccinated) both before and after challenge (Alteri et al., 2009).
    • Detailed Gene Information: Click here.
16. E. coli IutA protein vaccine
a. Vaccine Ontology ID:
VO_0011445
b. Type:
Subunit vaccine
c. Status:
Research
d. Antigen
E. coli IutA
e. Gene Engineering of IutA
  • Type: Recombinant protein preparation
  • Description: Genes encoding the selected antigens were PCR-amplified from CFT073 genomic DNA and cloned into either pBAD-myc-HisA (Invitrogen) or pET30b+ (Novagen). The six iron receptor vaccine candidates, ChuA, Hma, IutA, IreA, Iha, and IroN were expressed and purified as affinity-tagged recombinant proteins. Consistent with the predicted structure of these antigens, the CD spectrum of refolded purified Hma displayed a trough at 218 nm, which is characteristic of a β-sheet-rich conformation. The six purified protein antigens were each biochemically cross-linked to the adjuvant cholera toxin (CT) at a ratio of 10:1 (Alteri et al., 2009).
  • Detailed Gene Information: Click here.
f. Adjuvant: cholera toxin
g. Immunization Route
Intranasal
h. Mouse Response
  • Host Strain: CBA/J
  • Vaccination Protocol: Purified antigens were chemically cross-linked to cholera toxin (CT) (Sigma) at a ratio of 101 using N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) (Pierce) according to the manufacturer's recommendations. Peptide antigens were dissolved in 1 mM EDTA in PBS, mixed with reduced CT, and incubated at 4°C for 18 h. All immunizations were administered intranasally in a total volume of 20 µl/animal (10 µl/nare). Animals received a primary dose on day 0 of 100 µg crosslinked antigen (containing 10 µg CT) or 10 µg CT alone. Two boosts of 25 µg antigen (crosslinked to 2.5 µg CT) or 2.5 µg CT alone were given on days 7 and 14 (Alteri et al., 2009).
  • Challenge Protocol: The animals were transurethrally challenged with UPEC strain CFT073 and protection was assessed at 48 h post infection (hpi) by determining CFUs in the urine, bladder, and kidneys (Alteri et al., 2009).
  • Efficacy: Immunization with IutA protects against urinary tract colinization by E.coli CFT073 in the bladders of CBA/J mice (Alteri et al., 2009).
17. E. coli O157:H7 intimin vaccine
a. Vaccine Ontology ID:
VO_0000110
b. Type:
Subunit vaccine
c. Antigen
The antigen used in this vaccine was Int280α, which is the recombinant LEE-encoded protein from EPEC strain E2348/69. Int280α, a specific type of intimin, is the target of long-lived humoral immune responses in C. rodentium-infected mice. (Ghaem-Maghami et al., 2001).
d. Adjuvant: LTK63 vaccine mutant
e. Preparation
A highly purified preparation of recombinant Int280α from EPEC E2348/69 was used as an immunogen in mucosal and parenteral vaccination regimes (Ghaem-Maghami et al., 2001).
f. Mouse Response
  • Host Strain: C3H/Hej
  • Vaccination Protocol: Mice were immunized i.n. three times, on days 0, 14, and 28, with 10 μg of Int280α with or without an enterotoxin-based adjuvant for the mucosal regimes (Ghaem-Maghami et al., 2001).
  • Immune Response: Mice vaccinated intranasally were administered 10 μg of Int280α mounted serum IgG1 and IgG2a, but not IgA, antibody responses to Int280α. Codelivery of 1 mg of LT, LTR72, or LTK63 with Int280α significantly increased the serum IgG1 and IgG2a antibody response to Int280α. Moreover, the addition of a mucosal adjuvant resulted in the induction of Int280α-specific serum IgA responses. Analysis of Int280α-specific IgG subclasses in i.n. immunized mice showed a predominance of IgG1 over IgG2a. As occurred in s.c. immunized mice, the ratio of IgG1 to IgG2a was reduced when Int280α was coadministered with an enterotoxin-based adjuvant (Ghaem-Maghami et al., 2001).
  • Challenge Protocol: In separate experiments, mice were orally challenged with between 2 × 107 to 3 × 107 CFU of DBS255(pCVD438) 13 or 16 days after the last immunization. Mice were killed 14 days postchallenge, the colon of each mouse was weighed and homogenized, and the pathogen burden was determined by viable count (Ghaem-Maghami et al., 2001).
  • Efficacy: Mice immunized i.n. with PBS or an adjuvant had uniformly high C. rodentium counts in the colon. The pathogen burden was reduced, however, if mice were immunized i.n. with Int280α alone. As occurred in s.c. immunized animals, the addition of a mucosal adjuvant with Int280α negated some of the protective efficacy of i.n. vaccination using Int280α alone (Ghaem-Maghami et al., 2001).
g. Mouse Response
  • Host Strain: C3H/Hej
  • Vaccination Protocol: Mice were subcutaneously immunized three times, on days 0, 14, and 28, with 10 μg of Int280α with or without adjuvant.
  • Immune Response: Mice immunized with Int280α in the absence of adjuvant mounted serum IgG1 and IgG2a but not IgA antibody responses to Int280α. The coadministration of LT or LTR72 with Int280α prompted a more rapid Ig response to Int280α but did not, however, increase the magnitude of the final Int280α-specific IgG1 or IgG2a titer compared to that obtained in mice s.c. immunized with Int280α alone. Surprisingly, s.c. coadministration of LT or LTR72 with Int280α prompted a weak Int280α-specific serum IgA response, although this occurred in only a small number of mice. Int280α-specific IgG1 was the predominant IgG subclass elicited by parenteral vaccination, although the ratio of IgG1 to IgG2a was reduced when Int280α was coadministered with the adjuvant LT or LTR72 (Ghaem-Maghami et al., 2001).
  • Challenge Protocol: In separate experiments, mice were orally challenged with between 2 × 107 to 3 × 107 CFU of DBS255(pCVD438) 13 or 16 days after the last immunization. Mice were killed 14 days postchallenge, the colon of each mouse was weighed and homogenized, and the pathogen burden was determined by viable count (Ghaem-Maghami et al., 2001).
  • Efficacy: The colons of mice immunized s.c. with Int280α alone harbored significantly fewer challenge bacteria than the colons of naive or control animals (Ghaem-Maghami et al., 2001).
18. E. coli O157:H7 subunit vaccine expressing Esps and Tir
a. Vaccine Ontology ID:
VO_0000459
b. Type:
Subunit vaccine
c. Antigen
The antigen for this vaccine is supernatant proteins (containing Type III proteins Esps and Tir) prepared from E. Coli O157-H7 (Potter et al., 2004).
d. Gene Engineering of Tir
  • Type: Protein purification
  • Description: The E. coli strain O157:H7 was used for the production of Type III secreted proteins Tir and Esps (Potter et al., 2004).
  • Detailed Gene Information: Click here.
e. Adjuvant: VSA-3
f. Preparation
Supernatent proteins from E. coli O157-H7 were combined with the VSA3 to form protein concentrations of either 25 or 100 micrograms/ml. Each dose was 50 micrograms/ml (Potter et al., 2004).
g. Virulence
Not noted.
h. Cattle Response
  • Vaccination Protocol: Groups of 8 seronegative 6-month-old calves were immunized with 2 ml of vaccine delivered subcutaneously in the neck. A control group that received only the adjuvant was included (Potter et al., 2004).
  • Persistence: Not noted.
  • Immune Response: The group that received the vaccine showed a 13-fold increase in specific antibody titre to type III secreted proteins after a single immunization, and after a booster vaccination, the group demonstrated a 45-fold increase in specific antibody titre (Potter et al., 2004; Potter et al., 2004)
  • Challenge Protocol: Animals were challenged two weeks following the final vaccination with 108 CFU of E. coli O157-H7 by oral-gastic intubation (Potter et al., 2004).
  • Efficacy: On each of the post-challenge days, fewer vaccinated animals shed bacteria compared to the placebo group (Potter et al., 2004).
19. E. coli vaccine based on recombinant protein CO393
a. Tradename:
None
b. Vaccine Ontology ID:
VO_0000485
c. Type:
Subunit vaccine
d. Antigen
C0393 protein associated with ExPEC strains (Durant et al., 2007).
e. Gene Engineering of C0393
  • Type: Recombinant protein preparation
  • Description:
  • Detailed Gene Information: Click here.
f. Adjuvant: complete Freunds adjuvant
  • VO ID: VO_0000139
  • Description: Recombinant protein was emulsified in complete Freund's adjuvant (Sigma) during innoculation, but emulsified in incomplete Freund's adjuvant during boosting (Durant et al., 2007).
g. Adjuvant: incomplete Freunds adjuvant
  • VO ID: VO_0000142
  • Description: Recombinant protein was emulsified in complete Freund's adjuvant (Sigma) during innoculation, but emulsified in incomplete Freund's adjuvant during boosting (Durant et al., 2007).
h. Preparation
The chromosomal DNA of strain S26 was used as the source of DNA for expression of predicted surface antigens. PCR was performed. After purification, the PCR products were introduced into plasmid expression vectors to generate proteins fused with His6. The resulting plasmids were introduced into E. coli BL21 Star (DE3) (Invitrogen, Carlsbad, CA). For protein expression, overnight cultures were used to inoculate a fresh LB medium supplemented with ampicillin (100 µg/ml). Bacteria were grown and then harvested by centrifugation. Purification of recombinant proteins was performed by affinity chromatography . Fractions containing the recombinant protein were pooled and concentrated (Durant et al., 2007).
i. Virulence
Not noted.
j. Description
In terms of biological significance to humans, E. coli strains are grouped into three categories: (i) commensal strains that represent a large part of the normal flora, (ii) intestinal pathogenic strains that cause diseases when ingested in sufficient quantities, and (iii) pathogenic strains causing extraintestinal infections (extraintestinal pathogenic E. coli [ExPEC]). Recently, the resistance of the ExPEC strains to various classes of antibiotics has become a major concern both in hospitals and in the community. Vaccines represent a rational alternative approach for the prevention of these infections. In this case, the challenge is to selectively prevent a subtype of E. coli strains that is not normally part of the commensal flora. Therefore, it is of great importance to find some specific genetic traits of these ExPEC strains. The current study identifies putative antigens from ExPEC-specific genomic sequences. In an animal model of lethal sepsis, the protective effect of immunization with these antigens was demonstrated, allowing the identification of five antigens as vaccine candidates against an extraintestinal E. coli infection (Durant et al., 2007).
k. Mouse Response
  • Host Strain: 6-week-old BALB/c@Rj mice (Janvier Laboratories, France).
  • Vaccination Protocol: Purified recombinant proteins were used to immunize groups of mice. Each mouse was injected s.c. with 20 µg of recombinant protein emulsified in complete Freund's adjuvant (Sigma) on day 1. Three weeks later (day 21), the mice were given a boosting injection with 10 µg of recombinant protein emulsified in incomplete Freund's adjuvant. A control group was included in each experiment that consisted of mice injected on days 1 and 21 with PBS and adjuvant alone. Blood samples were drawn from control and immunized mice on day 41, and sera were examined for antigen-specific antibody response (Durant et al., 2007).
  • Persistence: Not noted.
  • Immune Response: More than half of the protective antigens were related to iron metabolism. This observation could be explained by the model of infection that was used to screen for vaccine candidates. Because the infectious model is a rapid dissemination of the bacteria from the peritoneal site in 24 h, resulting in the killing of the host in less than 48 h, the antibodies which recognize the essential factors for bacterial survival and multiplication in the peritoneum and the blood will be the most effective (Durant et al., 2007).
  • Side Effects: Not noted.
  • Challenge Protocol: Control and immunized groups of mice were challenged on day 42 by i.p. injection of E. coli S26 at a dose that caused death in 50% of the mouse population (LD50) (5 x 105 CFU/mouse). The survival of mice was monitored for 2 days after challenge. The survival rate in the vaccinated group was compared to the one obtained in the control group (Durant et al., 2007).
  • Efficacy: The number of mice surviving the lethal challenge was increased by 32% in the case of C0393 (Durant et al., 2007).
  • Description: The high identity between Hbp and C0393 (78%) suggests that the C0393 protein may act as a hemoglobin protease with heme-binding properties. In addition to the role of the Hbp in the pathogenesis of extraintestinal E. coli strains, the protein has been shown to protect mice against the formation of abscesses following a challenge with E. coli and B. fragilis (Durant et al., 2007).
20. E. coli vaccine based on recombinant protein FyuA
a. Tradename:
None
b. Vaccine Ontology ID:
VO_0000485
c. Type:
Subunit vaccine
d. Antigen
FyuA protein associated with ExPEC strains (Durant et al., 2007).
e. Gene Engineering of FyuA
  • Type: Recombinant protein preparation
  • Description:
  • Detailed Gene Information: Click here.
f. Adjuvant: complete Freunds adjuvant
  • VO ID: VO_0000139
  • Description: Recombinant protein was emulsified in complete Freund's adjuvant (Sigma) during innoculation, but emulsified in incomplete Freund's adjuvant during boosting (Durant et al., 2007).
g. Adjuvant: incomplete Freunds adjuvant
  • VO ID: VO_0000142
  • Description: Recombinant protein was emulsified in complete Freund's adjuvant (Sigma) during innoculation, but emulsified in incomplete Freund's adjuvant during boosting (Durant et al., 2007).
h. Preparation
The chromosomal DNA of strain S26 was used as the source of DNA for expression of predicted surface antigens. PCR was performed. After purification, the PCR products were introduced into plasmid expression vectors to generate proteins fused with His6. The resulting plasmids were introduced into E. coli BL21 Star (DE3) (Invitrogen, Carlsbad, CA). For protein expression, overnight cultures were used to inoculate a fresh LB medium supplemented with ampicillin (100 µg/ml). Bacteria were grown and then harvested by centrifugation. Purification of recombinant proteins was performed by affinity chromatography . Fractions containing the recombinant protein were pooled and concentrated (Durant et al., 2007).
i. Virulence
Not noted.
j. Description
In terms of biological significance to humans, E. coli strains are grouped into three categories: (i) commensal strains that represent a large part of the normal flora, (ii) intestinal pathogenic strains that cause diseases when ingested in sufficient quantities, and (iii) pathogenic strains causing extraintestinal infections (extraintestinal pathogenic E. coli [ExPEC]). Recently, the resistance of the ExPEC strains to various classes of antibiotics has become a major concern both in hospitals and in the community. Vaccines represent a rational alternative approach for the prevention of these infections. In this case, the challenge is to selectively prevent a subtype of E. coli strains that is not normally part of the commensal flora. Therefore, it is of great importance to find some specific genetic traits of these ExPEC strains. The current study identifies putative antigens from ExPEC-specific genomic sequences. In an animal model of lethal sepsis, the protective effect of immunization with these antigens was demonstrated, allowing the identification of five antigens as vaccine candidates against an extraintestinal E. coli infection (Durant et al., 2007).
k. Mouse Response
  • Host Strain: 6-week-old BALB/c@Rj mice (Janvier Laboratories, France).
  • Vaccination Protocol: Purified recombinant proteins were used to immunize groups of mice. Each mouse was injected s.c. with 20 µg of recombinant protein emulsified in complete Freund's adjuvant (Sigma) on day 1. Three weeks later (day 21), the mice were given a boosting injection with 10 µg of recombinant protein emulsified in incomplete Freund's adjuvant. A control group was included in each experiment that consisted of mice injected on days 1 and 21 with PBS and adjuvant alone. Blood samples were drawn from control and immunized mice on day 41, and sera were examined for antigen-specific antibody response (Durant et al., 2007).
  • Persistence: Not noted.
  • Immune Response: More than half of the protective antigens were related to iron metabolism. This observation could be explained by the model of infection that was used to screen for vaccine candidates. Because the infectious model is a rapid dissemination of the bacteria from the peritoneal site in 24 h, resulting in the killing of the host in less than 48 h, the antibodies which recognize the essential factors for bacterial survival and multiplication in the peritoneum and the blood will be the most effective (Durant et al., 2007).
  • Side Effects: Not noted.
  • Challenge Protocol: Control and immunized groups of mice were challenged on day 42 by i.p. injection of E. coli S26 at a dose that caused death in 50% of the mouse population (LD50) (5 x 105 CFU/mouse). The survival of mice was monitored for 2 days after challenge. The survival rate in the vaccinated group was compared to the one obtained in the control group (Durant et al., 2007).
  • Efficacy: FyuA recombinant protein has the ability to protect mice from a lethal sepsis (Durant et al., 2007).
  • Description: Iron-restricted mediums result in up-regulation of fyuA expression in ExPEC. The fyuA gene is part of the high-pathogenicity island initially described for Yersinia. Mutation in the fyuA gene has been shown to impair virulence of ExPEC strains in mice (Durant et al., 2007).
21. E. coli vaccine using intimin polypeptide
a. Tradename:
None
b. Vaccine Ontology ID:
VO_0000478
c. Type:
Subunit vaccine
d. Antigen
E. coli Intimin polypeptide(van et al., 2007).
e. Gene Engineering of Eae
  • Type: Preparation of recombinant protein
  • Description: The portion of the eae gene that encodes the carboxyl-terminal 280 amino acids of intimin was amplified by polymerase chain reaction from EHEC O26:H- strain 193 (Int280-β) and EHEC O157:H7 strain EDL933 (Int280-γ) using a conserved forward primer (Int-LIC-for: 5′-GAC GAC GAC AAG ATT ACT GAG ATT AAG GCT G-3′) and subtype-specific reverse primers (O26Int-LIC-rev: 5′-GAG GAG AAG CCC GGT TTA TTT TAC ACA AAC AG-3′ and O157Int-LIC-rev: 5′-GAG GAG AAG CCC GGT TTA TTC TAC ACA AAC CG-3′). The products were cloned in pET30-Ek/Lic (Novagen®) by a ligation-independent method as amino-terminal 6×His-S-tag fusions. Proteins were expressed in E. coli K-12 strain BL21 (DE3) Star cells which lack RNaseE to stabilise mRNA. The Overnight Express™ Autoinduction System I (Novagen®) was used to induce Int280-γ and Int280-β expression. Cell extracts were prepared using BugBuster® (Novagen®) and the supernatant fraction mixed with His-Mag™ Agarose Beads (Novagen®) for affinity purification of the Int280 proteins as described by the manufacturer
    (van et al., 2007).
  • Detailed Gene Information: Click here.
f. Adjuvant: aluminum hydroxide vaccine adjuvant
  • VO ID: VO_0000127
  • Description: Aluminium hydroxide oil-based adjuvant (Alu-Oil; Intervet International BV, Boxmeer, The Netherlands) (van et al., 2007).
g. Preparation
Proteins were expressed in E. coli K-12 strain BL21 (DE3) Star cells which lack RNaseE to stabilise mRNA. The Overnight Express™ Autoinduction System I (Novagen®) was used to induce Int280-γ and Int280-β expression. Cell extracts were prepared using BugBuster® (Novagen®) and the supernatant fraction mixed with His-Mag™ Agarose Beads (Novagen®) for affinity purification of the Int280 proteins as described by the manufacturer (van et al., 2007).
h. Virulence
Not noted.
i. Description
Enterohaemorrhagic Escherichia coli (EHEC) are zoonotic enteric pathogens of worldwide importance. EHEC strains produce intimin, an outer membrane adhesin encoded by the eae gene located in a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Intimin mediates intimate bacterial attachment to enterocytes by binding to Tir, a bacterial protein which is translocated into host cells by a LEE-encoded type III secretion system. Intimin can also bind in vitro to β1-integrins and cell-surface localised nucleolin and these proteins can be detected proximal to adherent EHEC O157:H7 in vivo. Intimin is a key colonisation factor for EHEC O157:H7 in neonatal calves, young and weaned calves, and adult cattle and sheep. In addition, intimin influences the carriage and virulence of EHEC O157:H7 in streptomycin pre-treated mice, infant rabbits, and gnotobiotic and neonatal piglets (van et al., 2007).
j. Cattle Response
  • Host Strain: Calves
  • Vaccination Protocol: In Trial 1, on day 0 and day 28 calves were vaccinated i.m. with Int280-γ. In Trial 2, calves were vaccinated with Int280-β on days 0 and 28 (van et al., 2007).
  • Persistence: Not noted.
  • Side Effects: Not noted.
  • Challenge Protocol: In Trial 1, on day 42 oral challenge was administered with 2.9 ± 0.78 × 1010 colony forming units (CFU) of EHEC O157:H7 strain EDL933 nalR. In Trial 2, on day 42 oral challenge was performed using 2.8 ± 0.67 × 1010 CFU EHEC O26:H- strain STM2H2 (van et al., 2007).
  • Efficacy: Subunit vaccines based on intimin polypeptides induced serum IgG and variable salivary IgA responses following parenteral immunisation of cattle. However, such responses did not confer significant resistance to intestinal colonisation by EHEC strains expressing the homologous antigens, even after boosting of such animals by the mucosal route (van et al., 2007).
  • Description: While it has been shown that i.n. immunisation of cattle with a carboxyl-terminal 64 kDa intimin polypeptide adjuvated with a low-toxicity derivative of E. coli heat-labile toxin induces antigen-specific serum IgG1 and salivary IgA, the protective efficacy of intimin-based subunit vaccines in cattle has yet to be tested. The present study assessed the protective efficacy of subunit vaccines comprising of intimin polypeptides against intestinal colonisation of cattle by EHEC strains of serotypes O157:H7 and O26:H- following parenteral and mucosal immunisation (van et al., 2007).
k. Mouse Response
  • Host Strain: Female BALB/c mice of 16 to 18 g (Charles River Laboratories, Inc.).
  • Vaccination Protocol: NT-1 cells or transgenic NT-1 cell clones that expressed Int261 were grown in 40-ml suspension cultures to confluence. Five grams of NT-1 cell material was divided into aliquots, and 0.5 g of sucrose was added to each sample. A 7.5-µg dose of purified cholera toxin (CT) (Sigma) was also added to appropriate samples to serve as an oral adjuvant. Mice were made to fast overnight before they were allowed to eat the plant material ad libitum. Mice immunized i.p. with purified His-tagged Int261 plus TiterMax served as the positive control (Judge et al., 2004).
  • Persistence: Not noted.
  • Side Effects: Not noted.
  • Challenge Protocol: Mice were made to fast overnight and fed a total inoculum of 108 to 109 CFU of E. coli O157:H7 strain 86-24 Strr or 86-24 Strr eae10 in each of two doses administered 4 h apart (Judge et al., 2004).
  • Efficacy: Parenteral priming of mice with intimin purified from transgenic plant cells can assist in the development of an intimin-specific fecal immune response when these mice are subsequently boosted with oral feeding of the same intimin-expressing transgenic plant material. Mice that were parenterally primed and then given an oral booster showed a statistically significant decrease in the duration of colonization by wild-type E. coli O157:H7 upon challenge. Mice immunized entirely by oral feeding did exhibit a reduction in the duration of colonization versus unimmunized mice, but the reduction was not statistically significant. These results suggest that a combination of vaccination strategies with a vaccine antigen produced in and delivered by transgenic plants can function in inducing beneficial, specific immune responses (Judge et al., 2004).
  • Description: An oral inoculation system was sought to facilitate induction of mucosal antibodies and for ease of administration. A transgenic plant cell system for intimin expression was used, with the ultimate goal of moving the antigen into whole-plant expression and delivery systems. Transgenic plants offer the flexibility to function as low-cost, efficient, and practical vaccine antigen oral delivery systems to stimulate mucosal immunity or to boost and shift initial immunity to a mucosal antibody response. Transgenic plants have already been used as successful vaccine antigen production and delivery systems. Carboxy-terminal third of intimin-expressing plant cells were created. Capacity of this transgenic material to induce adherence-blocking antibodies and to reduce levels and/or time of E. coli O157:H7 fecal shedding in a mouse model of intimin-dependent colonization were then evaluated (Judge et al., 2004).
22. E. coli vaccine using verocytotoxin toxoid
a. Vaccine Ontology ID:
VO_0000501
b. Type:
Subunit vaccine
c. Antigen
The antigens for these vaccines are either verocytoxin 1 (VT1) or verocytoxin 2 (VT2). The prototype toxin VT1 is virtually identical to Shiga toxin produced by Shigella dysenteriae type 1. By using in vitro neutralization tests in Vero cells, VT1 has been shown to be serologically distinct from VT2 in that these toxins showed no cross-neutralization by heterologous antisera (Bielaszewska et al., 1997).
d. Adjuvant: incomplete Freunds adjuvant
  • VO ID: VO_0000142
  • Description: Freund’s incomplete adjuvant was used in the making of these vaccines (Bielaszewska et al., 1997).
e. Preparation
VT1 was purified from JB28, an E. coli TB1 strain. VT2 was purified from E. coli R82pJES 120DH5a. The purity of these toxin preparations was established by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoretic analysis. The labeled toxins were characterized for specific activity (1.7 x 105 to 2.3 x 105 cpm/mg) and biological activity (3.8 x 105 and 1.9 x 103 50% cytotoxic doses [CD50s]/mg for VT1 and VT2, respectively). The Vero cell binding activities, which represent the percentage of the input activity bound to the 25-sq cm monolayers after 1h of incubation and three washes, were 48% for VT2 preparations and 75% for VT1 preparations. For the subunit immunizations, VT1 and VT2 were separated into the A and B subunit fractions by SDS-polyacrylamide gel electrophoresis. (Bielaszewska et al., 1997).
f. Rabbit Response
  • Host Strain: New Zealand White
  • Vaccination Protocol: Rabbits weighing approximately 2 kg were immunized subcutaneously with doses of 60 mg of toxoid mixed with equal volumes adjuvant in four sequential weekly intervals (Bielaszewska et al., 1997).
  • Immune Response: Rabbits immunized with the VT A and B subunits developed NAb to the homologous toxin but not to the heterologous toxin. Rabbits immunized with the A subunits were reactive by ELISA with the homologous toxin but were less, if at all, reactive to the heterologous toxin. Immunization with the B subunits led to the appearance of ELISA antibodyto the homologous toxin in the case of VT1 but did not lead to a detectable level of antibody in the case of VT2. Immunization with VT1 and VT2 toxoids resulted in strong ELISA antibody responses to both homologous and heterologous toxins (Bielaszewska et al., 1997).
  • Challenge Protocol: 125 I-labeled VT1 and VT2 were administered to rabbits which had been immunized, in groups of three, with either the A or B subunit of VT1, the A or B subunit of VT2, or with VT1 or VT2 holotoxoids and to nonimmune controls. Following administration of approximately 4 x 106 cpm of labeled VT through the ear vein, a 1- to 2-ml blood specimen was collected from the ear artery (Bielaszewska et al., 1997).
  • Efficacy: Animals immunized by either the VT1 A subunit or the VT2 A subunit were protected from target tissue uptake of both the homologous and heterologous125 I-labeled holotoxins. In contrast, in animals immunized with the toxin B subunits, protection was extended only against challenge by the homologous toxin. Findings indicate that the in vivo cross-neutralization is a predominant function of antibodies directed to the VT A subunits. This suggests that the VT1 A or VT2 A subunit may be a suitable immunogen for immunizing humans against systemic VT-mediated disease (Bielaszewska et al., 1997).
23. E.coli vaccine based on recombinant protein IroN
a. Tradename:
None
b. Vaccine Ontology ID:
VO_0000481
c. Type:
Subunit vaccine
d. Antigen
IroN protein associated with ExPEC strains (Durant et al., 2007).
e. Adjuvant: complete Freunds adjuvant
  • VO ID: VO_0000139
  • Description: Recombinant protein was emulsified in complete Freund's adjuvant (Sigma) during innoculation, but emulsified in incomplete Freund's adjuvant during boosting (Durant et al., 2007).
f. Adjuvant: incomplete Freunds adjuvant
  • VO ID: VO_0000142
  • Description: Recombinant protein was emulsified in complete Freund's adjuvant (Sigma) during innoculation, but emulsified in incomplete Freund's adjuvant during boosting (Durant et al., 2007).
g. Preparation
The chromosomal DNA of strain S26 was used as the source of DNA for expression of predicted surface antigens. PCR was performed. After purification, the PCR products were introduced into plasmid expression vectors to generate proteins fused with His6. The resulting plasmids were introduced into E. coli BL21 Star (DE3) (Invitrogen, Carlsbad, CA). For protein expression, overnight cultures were used to inoculate a fresh LB medium supplemented with ampicillin (100 µg/ml). Bacteria were grown and then harvested by centrifugation. Purification of recombinant proteins was performed by affinity chromatography . Fractions containing the recombinant protein were pooled and concentrated (Durant et al., 2007).
h. Virulence
Not noted.
i. Description
In terms of biological significance to humans, E. coli strains are grouped into three categories: (i) commensal strains that represent a large part of the normal flora, (ii) intestinal pathogenic strains that cause diseases when ingested in sufficient quantities, and (iii) pathogenic strains causing extraintestinal infections (extraintestinal pathogenic E. coli [ExPEC]). Recently, the resistance of the ExPEC strains to various classes of antibiotics has become a major concern both in hospitals and in the community. Vaccines represent a rational alternative approach for the prevention of these infections. In this case, the challenge is to selectively prevent a subtype of E. coli strains that is not normally part of the commensal flora. Therefore, it is of great importance to find some specific genetic traits of these ExPEC strains. The current study identifies putative antigens from ExPEC-specific genomic sequences. In an animal model of lethal sepsis, the protective effect of immunization with these antigens was demonstrated, allowing the identification of five antigens as vaccine candidates against an extraintestinal E. coli infection (Durant et al., 2007).
j. Mouse Response
  • Host Strain: 6-week-old BALB/c@Rj mice (Janvier Laboratories, France).
  • Vaccination Protocol: Purified recombinant proteins were used to immunize groups of mice. Each mouse was injected s.c. with 20 µg of recombinant protein emulsified in complete Freund's adjuvant (Sigma) on day 1. Three weeks later (day 21), the mice were given a boosting injection with 10 µg of recombinant protein emulsified in incomplete Freund's adjuvant. A control group was included in each experiment that consisted of mice injected on days 1 and 21 with PBS and adjuvant alone. Blood samples were drawn from control and immunized mice on day 41, and sera were examined for antigen-specific antibody response (Durant et al., 2007).
  • Persistence: Not noted.
  • Immune Response: More than half of the protective antigens were related to iron metabolism. This observation could be explained by the model of infection that was used to screen for vaccine candidates. Because the infectious model is a rapid dissemination of the bacteria from the peritoneal site in 24 h, resulting in the killing of the host in less than 48 h, the antibodies which recognize the essential factors for bacterial survival and multiplication in the peritoneum and the blood will be the most effective (Durant et al., 2007).
  • Side Effects: Not noted.
  • Challenge Protocol: Control and immunized groups of mice were challenged on day 42 by i.p. injection of E. coli S26 at a dose that caused death in 50% of the mouse population (LD50) (5 x 105 CFU/mouse). The survival of mice was monitored for 2 days after challenge. The survival rate in the vaccinated group was compared to the one obtained in the control group (Durant et al., 2007).
  • Efficacy: IroN recombinant protein has the ability to protect mice from lethal sepsis. The number of mice surviving the lethal challenge was increased by 82% (Durant et al., 2007).
  • Description: Iron is an important growth factor for pathogenic bacteria. In the host, a very low concentration of free iron is available. Bacteria have developed several strategies to uptake and store iron present within the host by producing siderophore receptors or iron uptake systems involving proteins which release iron from host-iron complexes. Recently, a protective effect has been described for IroN in a UTI model as well as a contribution of the protein to the virulence of ExPEC strains of different pathotypes (Durant et al., 2007).
24. EHEC O157 subunit vaccine using his-tagged N-terminal intimin
a. Vaccine Ontology ID:
VO_0000505
b. Type:
Subunit vaccine
c. Antigen
The antigen used in this vaccine was purified intimin O157, creating antibodies against EHEC O157 adhesin (Dean-Nystrom et al., 2002).
d. Gene Engineering of CS1
  • Type: Gene mutation
  • Description: RIHisEae is a histidine-tagged version of the entire intimin protein from EHEC O157:H7 strain 86-24 minus the N-terminal 35 amino acids, which are thought to be part of a cleaved N-terminal signal sequence. For analysis of colostrum samples, a histidine-tagged N-terminal two-thirds fragment of intimin and a histidine-tagged C-terminal one-third fragment of intimin were purified (Dean-Nystrom et al., 2002).
  • Detailed Gene Information: Click here.
e. Adjuvant: Titermax Gold
f. Preparation
The histidine-tagged intimin O157 protein RIHisEae was purified. RIHisEae is a histidine-tagged version of the entire intimin protein from EHEC O157:H7 strain 86-24 minus the N-terminal 35 amino acids, which are thought to be part of a cleaved N-terminal signal sequence. The intimin was mixed with TiterMax Gold to form the vaccine (Dean-Nystrom et al., 2002).
g. Pig Response
  • Host Strain: unknown crossbreed
  • Vaccination Protocol: Three crossbred pregnant dams were vaccinated intramuscularly with intimin O157 mixed with TiterMax Gold adjuvant (500 μg of intimin/dose) at 2 and 4 weeks prior to farrowing (Dean-Nystrom et al., 2002).
  • Immune Response: The serum anti-intimin O157 titers of the vaccinated dams after they had farrowed were >10,000, but those of the sham-vaccinated dams were ≤100 (Dean-Nystrom et al., 2002).
  • Challenge Protocol: Piglets naturally farrowed suckled colostrum before inoculation with E. coli O157:H7. All piglets were inoculated with 106 CFU of Stx-negative E. coli O157:H7 strain 87-23 administered via stomach tube after all of the piglets had nursed and before the piglets were 8 h old (Dean-Nystrom et al., 2002).
  • Efficacy: All seven of the piglets that nursed a vaccinated dam and were at least 2 h old when they were inoculated with E. coli O157:H7 had serum anti-intimin O157 titers of ≥10,000 at the time they were challenged. Two piglets in this same litter that were inoculated before they were 2 h old had a titer of 100. All eight of the piglets nursing one sham-vaccinated dam had titers of <100. Piglets that ingested colostrum containing intimin O157-specific antibodies from vaccinated dams, but not those nursing sham-vaccinated dams, were protected from EHEC O157:H7 colonization and intestinal damage. These results establish intimin O157 as a viable candidate for an EHEC O157:H7 antitransmission vaccine.
25. Escherichia Coli Avirulent Live Culture Vaccine (USDA: 1551.02)
a. Manufacturer:
Arko Laboratories Ltd.
b. Vaccine Ontology ID:
VO_0001821
c. Type:
Live vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Turkey
26. Escherichia Coli Avirulent Live Culture Vaccine (USDA: 15R1.00)
a. Manufacturer:
Arko Laboratories Ltd.
b. Vaccine Ontology ID:
VO_0001822
c. Type:
Live vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Turkey
27. Escherichia coli carAB mutant vaccine
a. Type:
Live, attenuated vaccine
b. Status:
Research
c. Host Species as Laboratory Animal Model:
Turkey
d. Gene Engineering of carA
e. Gene Engineering of carB
f. Immunization Route
Oral immunization
g. Turkey Response
  • Persistence: A carAB mutant is attenuated in turkeys (Kwaga et al., 1994).
  • Efficacy: A carAB mutant induces significant protection in turkeys from challenge with wild type E. coli (Kwaga et al., 1994).
28. Escherichia coli ler mutant vaccine
a. Vaccine Ontology ID:
VO_0002838
b. Type:
Live, attenuated vaccine
c. Status:
Research
d. Host Species as Laboratory Animal Model:
Mouse
e. Gene Engineering of ler
  • Type: Gene mutation
  • Description: This ler mutant is from Escherichia coli (Liu et al., 2009).
  • Detailed Gene Information: Click here.
f. Gene Engineering of ler
  • Type: Gene mutation
  • Description: This ler mutant is from Escherichia coli (Liu et al., 2009).
  • Detailed Gene Information: Click here.
g. Immunization Route
Oral immunization
h. Mouse Response
  • Persistence: A ler mutant is attenuated in mice (Liu et al., 2009).
  • Efficacy: Suckling mice born to mothers immunized with a ler mutant were protected from challenge with wild type E. coli (Liu et al., 2009).
29. Escherichia Coli Live Culture Vaccine (USDA: 1551.R0)
a. Manufacturer:
Wyeth
b. Vaccine Ontology ID:
VO_0001823
c. Type:
Live vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Turkey
30. Escherichia coli rfaL mutant vaccine
a. Vaccine Ontology ID:
VO_0002839
b. Type:
Live, attenuated vaccine
c. Status:
Research
d. Host Species as Laboratory Animal Model:
Mouse
e. Gene Engineering of rfaL
f. Immunization Route
Bladder instillation
g. Mouse Response
  • Persistence: An rfaL mutant is attenuated in mice (Billips et al., 2009).
  • Efficacy: An rfaL mutant induces significant protection in mice from challenge with wild type E. coli. Protection lasted more than 8 weeks (Billips et al., 2009).
  • Host Gene Response of IL-6
    • Gene Response: NU14 ΔwaaL significantly enhanced mouse macrophage IL-6 secretion relative to wild-type NU14 4 hours after treatment. TNF-alpha reduced IL-6 expression of deletion mutants, but under these conditions IL-6 was expressed more than that expressed by macrophages infected with the wild type in the presence of TNF-alpha (Billips et al., 2009).
    • Detailed Gene Information: Click here.
31. inactivated ETEC expressing expressing CFA/I and CFA/II
a. Vaccine Ontology ID:
VO_0000502
b. Type:
Inactivated or "killed" vaccine
c. Antigen
The antigen used in this vaccine was ETEC bacteria expressing fimbrial colonization factor antigens I and II (CFA/I and CFA/II) (Wennerås et al., 1992).
d. Adjuvant: cholera toxin B subunit
  • VO ID: VO_0001242
  • Description: cholera toxin B subunit (CTB). However, it was found that CTB did not function as a mucosal adjuvant, since CFA-specific ASC responses were not enhanced by the simultaneous administration of CTB (Wennerås et al., 1992).
e. Preparation
Each vaccine consisted of 1011 formalin-killed ETEC bacteria expressing CFA/I and CFA/II (CS1, CS2, and CS3). The following strains were used: an ST-positive 078:H12 strain expressing CFA/I, a toxin-negative 0139:H28 strain expressing CS1, and an ST-positive 06:H16 strain expressing CS2 and CS3 The strains were grown under conditions leading to a high level of expression of the different CFAs, and thereafter the organisms were killed by mild formalin treatment, preserving 50 to 100% of the CFA activity. The inactivated bacteria were mixed to give a total of 1011 formalin-killed E. coli bacteria in 4 ml of phosphate-buffered saline, corresponding to one vaccine dose. The CFA/I proteins used in the vaccine were purified from a flagellum-deficient mutant of strain H10407 by homogenization with a blender followed by ammonium sulfate fractionation and negative diethylaminoethyl-Sephadex column chromatography. Purified CFA/II (CS1 plus CS3) protein was prepared from strain E1392-75 by homogenization followed by salt precipitation and column chromatography (Wennerås et al., 1992).
f. Human Response
  • Vaccination Protocol: Thirty-seven healthy adult individuals participated in this study. Thirty-one volunteers received three oral doses of a prototype ETEC vaccine, with a 2-week interval between doses; six volunteers were studied for control purposes only. To provide the CTB component, 21 of the vaccinees also received a dose of oral cholera vaccine, consisting of 1 mg of purified CTB and 1011 killed Vibrio cholerae O1 organisms together with the ETEC expressing the various CFAs (CFA+ ETEC) (Wennerås et al., 1992).
  • Immune Response: ASC responses to both CFAs were comparable in magnitude and isotype distribution, with IgA-ASCs dominating the response. After three oral immunizations, the vaccinees had, respectively, 14- and 11-times-higher geometric mean levels of IgA-ASCs directed against CFA/I and CFA/II than did nonimmunized controls. The geometric means of specific IgA-ASCs postvaccination were 31 per 107 MNC for CFA/I and 23 per 107 MNC for CFA/II. Although less pronounced, IgM-ASC responses to the CFAs were also detected in most vaccinees. After three immunizations, the geometric means of IgM-ASCs were 11 and 6 times higher for CFA/I and CFA/II, respectively, than in nonimmunized controls. CFA-specific IgG-ASCs were rarely detected. Specific ASC responses to the CTB component of the vaccine were detected in all volunteers but differed from CFA-specific responses with respect to isotype distribution. The results of this study suggest that two oral immunizations are efficient at inducing optimal CFA-specific responses, since the numbers of CFA-ASCs were not increased but rather were decreased upon administration of a third dose of vaccine. (Wennerås et al., 1992).
  • Side Effects: A few of the vaccinees experienced slight abdominal discomfort for a couple of hours on the day of either the first or second immunization (Wennerås et al., 1992).
  • Efficacy: Almost 90% of the volunteers developed CFA-specific ASC responses after vaccination (Wennerås et al., 1992).
32. KLH-s-FimH1-25 with CFA and then IFA
a. Type:
Subunit vaccine
b. Status:
Research
c. Host Species for Licensed Use:
Mouse
d. Antigen
key-hole limpet hemocyanin (KLH)-conjugated s-FimH1–25FimH peptide 1-25 aa (Thankavel et al., 1997)
e. Gene Engineering of FimH from E. coli str. K-12 substr. MG1655
  • Type: peptide 1-25 residues synthesis
  • Description:
  • Detailed Gene Information: Click here.
f. Immunization Route
intramuscularly and subcutaneously
g. Mouse Response
  • Immune Response: Each mouse was injected intramuscularly and subcutaneously with 150 mg of KLH-conjugated synthetic peptide emulsified in CFA. 4 wk later, each animal was boosted with 150 mg of the same immunogen emulsified in incomplete Freund’s Adjuvant (Thankavel et al., 1997).
  • Challenge Protocol: 5 d after intravesicular challenge with E. coli CI5 (50 ml of 1 3 109 CFU/ml PBS bacterial suspension), the bladder from each mouse was homogenized and the CFU determined (Thankavel et al., 1997).
  • Efficacy: in vivo E. coli colonization in the bladders of mice actively immunized with synthetic FimH1–25 was significantly reduced (Thankavel et al., 1997).
33. Live attenuated ETEC vaccine ACAM2007
a. Tradename:
None
b. Vaccine Ontology ID:
VO_0000511
c. Type:
Live attenuated
d. Antigen
ETEC CFA/II: CS2 and CS3 (Daley et al., 2007).
e. Gene Engineering of Sph
  • Type: Preparation of expression of CFA/II
  • Description: Colonisation factor antigens allow adherence ot the mucosal surface and thus colonisation of the intestine (Daley et al., 2007).
  • Detailed Gene Information: Click here.
f. Preparation
ACAM2007 was derived from WS-3504D Serotype O39: H12. Genes aroC, ompC, and ompF were deleted, while pStrep was added (Daley et al., 2007).
g. Virulence
The vaccine is believed to be safe (Daley et al., 2007).
h. Description
Enterotoxigenic E. coli (ETEC) infection is the single most frequent cause of bacterial diarrhoeal disease worldwide. As immunity to ETEC is strain specific, the ability to create vaccines in vitro which express multiple antigens would be desirable. ETEC expresses a range of colonisation factor antigens (CFAs), which allow adherence ot the mucosal surface and thus colonisation of the intestine. CFA-I, CFA-II, and CFA-IV are the most common antigens encountered in natural ETEC infection. An ideal vaccine againtst ETEC should colonise the intestinal mucosa without causing ijnflammation, and then stimulate a protective immune response. ACAM2007 is a CFA/II expressing vaccine (Daley et al., 2007).
i. Human Response
  • Host Strain: Human
  • Vaccination Protocol: Vaccination Protocol: Ninety eight healthy adult volunteers (40 men, 58 women) aged 18-49 years were studied. Vaccine doses were prepared in 200ml of Cera Vacx, a buffer solution in order to neutralize gastric acid. The vaccine was tested initially by preforming dose-escalation studies to determiine the highest, safe and tolerated dose. Initially, it was administered using 5*107, 5*108, and 5*109 cfu. The highest dose was used in comparison with placebo. Blood was collected from volunteers 3, 7, 10, 13 days after each dose of vaccine or placebo, and the hightest value used as 'peak' titre or count (Daley et al., 2007).
  • Persistence: Not noted.
  • Side Effects: Nonserious adverse events were recorded in nearly all subjects with equal numbers in vaccine and placebo recipients (Daley et al., 2007).
  • Challenge Protocol: The vaccine was designed to work against enterotoxigenic E. coli (ETEC), but no challenge was performed due to sole interest in immune responses (Daley et al., 2007).
  • Efficacy: Responses to vaccination were assessed using ASC, ALS, serolgy and WGLF. ALS and WGLF responses were consistently clearer than those of ASC and serum IgA (Daley et al., 2007).
  • Description: The vaccine was tested in Phase 1 studies for potential inclusion in a polyvalent oral vaccine. In order to cover the widest range of ETEC subtypes, any poetential vaccine should contain at least CFA-I, CFA-II, and CFA-IV components. This was one of three vaccines involved in the study (Daley et al., 2007).
34. Live attenuated ETEC vaccine ACAM2010
a. Tradename:
None
b. Vaccine Ontology ID:
VO_0000036
c. Type:
Live attenuated
d. Antigen
ETEC colonization factor antigen CFA/I, E. coli heat-stable (ST) toxin, E. coli EAST1 toxin (Daley et al., 2007).
e. Gene Engineering of Sph
  • Type: Preparation for expression of CFA1
  • Description: A new suicide vector (pJCB12) was constructed and used to delete the ST and EAST1 genes and to introduce defined deletion mutations into the aroC, ompC, and ompF chromosomal genes, which generated vaccine candidate strain ACAM2010 (Turner et al., 2006).
  • Detailed Gene Information: Click here.
f. Preparation
ACAM2010 involved the use of parent strain WS-1858B serotype O71:H-. Genes aroC, ompC, and ompF were deleted, while pStrep (plasmid-borne) was added (Daley et al., 2007).
g. Virulence
The vaccine is believed to be safe (Daley et al., 2007).
h. Description
Enterotoxigenic E. coli (ETEC) infection is the single most frequent cause of bacterial diarrhoeal disease worldwide. As immunity to ETEC is strain specific, the ability to create vaccines in vitro which express multiple antigens would be desirable. ETEC expresses a range of colonisation factor antigens (CFAs), which allow adherence ot the mucosal surface and thus colonisation of the intestine. CFA-I, CFA-II, and CFA-IV are the most common antigens encountered in natural ETEC infection. An ideal vaccine againtst ETEC should colonise the intestinal mucosa without causing ijnflammation, and then stimulate a protective immune response. ACAM2010 is a CFA/I expressing vaccine (Daley et al., 2007).
i. Human Response
  • Host Strain: Human
  • Vaccination Protocol: Ninety eight healthy adult volunteers (40 men, 58 women) aged 18-49 years were studied. Vaccine doses were prepared in 200ml of Cera Vacx, a buffer solution in order to neutralize gastric acid. The vaccine was tested initially by preforming dose-escalation studies to determiine the highest, safe and tolerated dose. Initially, it was administered using 5*107, 5*108, and 5*109 cfu. The highest dose was used in comparison with placebo. Blood was collected from volunteers 3, 7, 10, 13 days after each dose of vaccine or placebo, and the hightest value used as 'peak' titre or count (Daley et al., 2007).
  • Persistence: Not noted.
  • Side Effects: Nonserious adverse events were recorded in nearly all subjects with equal numbers in vaccine and placebo recipients (Daley et al., 2007).
  • Challenge Protocol: The vaccine was designed to work against enterotoxigenic E. coli (ETEC), but no challenge was performed due to sole interest in immune responses (Daley et al., 2007).
  • Efficacy: Responses to vaccination were assessed using ASC, ALS, serolgy and WGLF. Only DFA-I-specific IgA in serum and WGLF showed clear evidence of a dose-response correlation (Daley et al., 2007).
  • Description: The vaccine was tested in Phase 1 studies for potential inclusion in a polyvalent oral vaccine. In order to cover the widest range of ETEC subtypes, any poetential vaccine should contain at least CFA-I, CFA-II, and CFA-IV components. This was one of three vaccines involved in the study (Daley et al., 2007).
35. Live attenuated ETEC vaccine ACAM2017
a. Tradename:
None
b. Vaccine Ontology ID:
VO_0000517
c. Type:
Live attenuated
d. Gene Engineering of CS1
  • Type: Preparation of CFA/II expression
  • Description: ACAM2017 was derived using essentially the same methodology of modifying chromosomal loci via homologous recombination (Daley et al., 2007).
  • Detailed Gene Information: Click here.
e. Preparation
ACAM2017 was derived from ACAM2007. Genes aroC, ompC, and ompF were deleted, while CS1 and pStrep were added (Daley et al., 2007).
f. Virulence
The vaccine is believed to be safe (Daley et al., 2007).
g. Description
Enterotoxigenic E. coli (ETEC) infection is the single most frequent cause of bacterial diarrhoeal disease worldwide. As immunity to ETEC is strain specific, the ability to create vaccines in vitro which express multiple antigens would be desirable. ETEC expresses a range of colonisation factor antigens (CFAs), which allow adherence ot the mucosal surface and thus colonisation of the intestine. CFA-I, CFA-II, and CFA-IV are the most common antigens encountered in natural ETEC infection. An ideal vaccine againtst ETEC should colonise the intestinal mucosa without causing ijnflammation, and then stimulate a protective immune response. ACAM2017 is a CFA/I expressing vaccine (Daley et al., 2007).
h. Human Response
  • Host Strain: Human
  • Vaccination Protocol: Vaccination Protocol: Vaccination Protocol: Ninety eight healthy adult volunteers (40 men, 58 women) aged 18-49 years were studied. Vaccine doses were prepared in 200ml of Cera Vacx, a buffer solution in order to neutralize gastric acid. The vaccine was tested initially by preforming dose-escalation studies to determiine the highest, safe and tolerated dose. Initially, it was administered using 5*107, 5*108, and 5*109 cfu. The highest dose was used in comparison with placebo. Blood was collected from volunteers 3, 7, 10, 13 days after each dose of vaccine or placebo, and the hightest value used as 'peak' titre or count (Daley et al., 2007).
  • Persistence: Not noted.
  • Side Effects: Nonserious adverse events were recorded in nearly all subjects with equal numbers in vaccine and placebo recipients (Daley et al., 2007).
  • Challenge Protocol: The vaccine was designed to work against enterotoxigenic E. coli (ETEC), but no challenge was performed due to sole interest in immune responses (Daley et al., 2007).
  • Efficacy: Responses to vaccination were assessed using ASC, ALS, serolgy and WGLF. ALS and WGLF responses were consistently clearer than those of ASC and serum IgA (Daley et al., 2007).
  • Description: The vaccine was tested in Phase 1 studies for potential inclusion in a polyvalent oral vaccine. In order to cover the widest range of ETEC subtypes, any poetential vaccine should contain at least CFA-I, CFA-II, and CFA-IV components. This was one of three vaccines involved in the study (Daley et al., 2007).
36. Porcine Rotavirus Modified Live Virus Vaccine-Clostridium Perfringens Type C-Escherichia Coli Bacterin-Toxoid (USDA: 49C1.21)
a. Manufacturer:
Intervet Inc.
b. Vaccine Ontology ID:
VO_0002308
c. Type:
Live, attenuated vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Pig
37. Porcine Rotavirus Modified Live Virus Vaccine-Escherichia Coli Bacterin (USDA: 49K1.20)
a. Manufacturer:
Intervet Inc.
b. Vaccine Ontology ID:
VO_0002315
c. Type:
Live, attenuated vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Pig
38. Porcine Rotavirus-Transmissible Gastroenteritis Modified Live Virus Vaccine-Bordetella Bronchiseptica-Clostridium Perfringens Type C-Erysipelothrix Rhusiopathiae-Escherichia Coli-Pasteurella Multocida Bacterin-Toxoid (USDA: 49T9.21)
a. Manufacturer:
Intervet Inc.
b. Vaccine Ontology ID:
VO_0002319
c. Type:
Live, attenuated vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Pig
39. Porcine Rotavirus-Transmissible Gastroenteritis Modified Live Virus Vaccine-Clostridium Perfringens Type C-Escherichia Coli Bacterin-Toxoid (USDA: 49B1.21)
a. Manufacturer:
Intervet Inc.
b. Vaccine Ontology ID:
VO_0002307
c. Type:
Live, attenuated vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Pig
40. Porcine Rotavirus-Transmissible Gastroenteritis Modified Live Virus Vaccine-Escherichia Coli Bacterin (USDA: 49P1.20)
a. Manufacturer:
Intervet Inc.
b. Vaccine Ontology ID:
VO_0002318
c. Type:
Live, attenuated vaccine
d. Status:
Licensed
e. Location Licensed:
USA
f. Host Species for Licensed Use:
Pig
41. rBCG -Stx2B (Escherichia coli )
a. Vaccine Ontology ID:
VO_0004657
b. Type:
Recombinant vector vaccine
c. Status:
Research
d. Host Species for Licensed Use:
Baboon
e. Gene Engineering of StxB2
  • Type: Recombinant vector construction
  • Description: A novel vaccine against Shiga toxin (Stx)-producing Escherichia coli (STEC) infection using a recombinant Mycobacterium bovis BCG (rBCG) system expressing the Stx2 B subunit (Stx2B) (Fujii et al., 2012).
  • Detailed Gene Information: Click here.
f. Preparation
rBCG expressing the Stx2 B subunit (Stx2B) (Fujii et al., 2012).
g. Immunization Route
Intramuscular injection (i.m.)
h. Mouse Response
  • Vaccination Protocol: The mice were given Two intraperitoneal vaccinations of rBCG -Stx2B (Fujii et al., 2012).
  • Vaccine Immune Response Type: VO_0003057
  • Challenge Protocol: The mice were orally challenged with 103 CFU of STEC strain B2F1 (O91: H21) (Fujii et al., 2012).
  • Efficacy: The immunized mice survived statistically significantly longer than the nonvaccinated mice (Fujii et al., 2012).
42. Recombinant Tir Protein Vaccine
a. Vaccine Ontology ID:
VO_0004256
b. Type:
Subunit vaccine
c. Status:
Research
d. Host Species as Laboratory Animal Model:
Mice
e. Antigen
Recombinant Tir protein (Fan et al., 2011).
f. Gene Engineering of Tir
  • Type: Recombinant protein preparation
  • Description:
  • Detailed Gene Information: Click here.
g. Immunization Route
intranasal immunization
h. Description
Purified Tir protects mice against EHEC challenge after intranasal immunization and is worth further clinical development as a vaccine candidate (Fan et al., 2011).
43. Shiga Toxin 2 B Subunit Vaccine
a. Vaccine Ontology ID:
VO_0004145
b. Type:
Subunit vaccine
c. Antigen
The antigen for this vaccine is Shiga Toxin 2 B subunit (Marcato et al., 2001).
d. Gene Engineering of CS1
  • Type: Recombinant protein preparation
  • Description: The Stx2 B subunit, which binds to globotriaosylceramide (GB3) receptors on target cells, was cloned. This involved replacing the Stx2 B subunit leader peptide nucleotide sequences with those from the Stx1 B subunit. The construct was expressed in the TOPP3 E. coli strain. The Stx2 B subunits from this strain assembled into a pentamer and bound to a GB3 receptor analogue. The cloned Stx2 B subunit was not cytotoxic to Vero cells or apoptogenic in Burkitt's lymphoma cells (Moravec et al., 2007).
  • Detailed Gene Information: Click here.
e. Gene Engineering of StxB2
  • Type: Recombinant protein preparation
  • Description: Shiga toxin 2 subunit B was used in the formation of a construct (Marcato et al., 2001).
  • Detailed Gene Information: Click here.
f. Adjuvant: QuilA vaccine adjuvant
g. Adjuvant: saponin vaccine adjuvant
  • VO ID: VO_0001267
  • Description: Quil‐A Saponin (Marcato et al., 2001).
h. Preparation
The vaccine contained cloned low endotoxin Stx2 B subunit preparation homogenized in an equal volume of adjuvant. The sham vaccine (used for a control) contained a 1:1 homogenate of Quil‐A and pyrogen‐free 0.9% NaCl irrigation solution (Marcato et al., 2001).
i. Rabbit Response
  • Host Strain: New Zealand White
  • Vaccination Protocol: Eight female rabbits, weighing 2 kg each, in 2 groups of 4 were immunized. The rabbits in 1 group were injected in the subscapular region with the cloned low endotoxin Stx2 B subunit preparation homogenized inadjuvant. The rabbits in the second group were sham immunized. The rabbits were injected 3 times, on a monthly schedule, the first time with 150 μg of antigen and each subsequent time with 100 μg of antigen. The 8 rabbits then were subgrouped for a second round of immunization. Four rabbits, 2 from the low endotoxin Stx2 B subunit–immunized group and 2 from the sham‐immunized control group, were given 2 additional 100‐μg injections of a cloned Stx2 B subunit preparation, in which the endotoxin concentration had only been reduced to 2000 endotoxin U/mL (high endotoxin Stx2 B subunit preparation). The remaining 4 rabbits, 2 previously immunized with the low endotoxin Stx2 B subunit preparation and 2 from the sham‐immunized control group, received 2 additional 100‐μg injections of the low endotoxin Stx2 B subunit preparation (Marcato et al., 2001).
  • Immune Response: As anticipated, none of the preimmunization serum samples from the 8 rabbits nor any serum samples from the 4 sham‐immunized control animals contained evidence of Stx2‐reactive antibodies by ELISA, immunoblot, or Vero cytotoxicity neutralizing assays. Rabbits which were primed with 3 injections of the low endotoxin Stx2 B subunit preparation and then were injected twice with high endotoxin (2000 U/mL) Stx2 B subunit, developed a specific antibody response to the immunogen after the first of the 2 additional injections. In addition, after receiving 2 injections of the low endotoxin Stx2 B preparation, 1 of the first round, sham‐immunized control rabbits, K103, produced a specific antibody response to the Stx2 B subunit. A rabbit of the first round sham‐immunized animals produced a weak antibody response to the Stx2 B subunit after 2 injections with the high endotoxin Stx2 B subunit preparation (Marcato et al., 2001).
  • Challenge Protocol: Rabbits were challenged with 5 μg of Stx2 holotoxin per kilogram of body weight. The purified Stx2 holotoxin preparations were homogenized with an equal volume of Quil‐A adjuvant and were injected into the subscapular region of each rabbit. The rabbits then were monitored every 4 h for 1 week and thereafter once daily for 3 weeks. The rabbits were killed as soon as toxic effects (anterior ataxia or paralysis) were observed. At the end of the 1‐month study, asymptomatic surviving rabbits were also killed for postmortem examination (Moravec et al., 2007).
  • Efficacy: All the Stx2 holotoxin‐challenged rabbits that failed to display Western immunoblot evidence of Stx2 B subunit–specific antibodies developed Stx2‐related symptoms between postchallenge days 2 and 4 and were killed. One rabbit, which developed a weak Western immunoblot response to the Stx2 B subunit, also developed Stx2‐related symptoms on postchallenge day 2 and was killed. In contrast, three other rabbits, which produced Western immunoblot‐positive Stx2 B subunit antibodies, remained asymptomatic throughout the 1‐month study. At postmortem examination, all the unprotected rabbits displayed various degrees of Stx‐mediated organ and tissue damage. In contrast, all tissues and organs in each of the three protected rabbits appeared to be normal (Moravec et al., 2007).
44. soybean-expressed E. coli LTB vaccine
a. Vaccine Ontology ID:
VO_0000466
b. Type:
Subunit vaccine
c. Antigen
Subunti B of E. coli heat labile enterotoxin LTB (Moravec et al., 2007).
d. Gene Engineering of EltB
  • Type: Expression of protein subunit
  • Description: The B subunit of the heat labile toxin of enterotoxigenic Escherichia coli (LTB) was used as a model immunogen for production in soybean seed. LTB expression was directed to the endoplasmic reticulum (ER) of seed storage parenchyma cells for sequestration in de novo synthesized inert protein accretions derived from the ER. Pentameric LTB accumulated to 2.4% of the total seed protein at maturity and was stable in desiccated seed(Moravec et al., 2007) .
  • Detailed Gene Information: Click here.
e. Gene Engineering of FaeG
  • Type: Seed-specific protein expression
  • Description: A synthetic plant codon-optimized LTB gene and AAC60441, generously provided by A. Walmsley (Arizona Biodesign Institute) was modified by substitutions of the bacterial signal peptide with a 20 aa signal peptide from A. thaliana basic chitinase. A 14 aa extension comprising the FLAG epitope and KDEL ER retention signal, and flanking Bsp120 restriction sites were introduced by PCR. The final sequence encoded a 137 aa protein of 15.5 kDa that yielded a 13.3 kDa LTB-FLAG protein after signal peptide cleavage. Following subcloning into pGEM T/A (Promega) for sequence verification, the Bsp120 LTB gene fragment was subcloned into the pGly vector, placing it under the control of soybean seed-specific glycinin promoter and terminator [35]. The final soybean transformation vector pGly::ER-LTB contained a hygromycin selection marker (kindly provided by N. Murai, Lousiana State University) under the control of potato ubiquitin 3 promoter and terminator.
    LT is a hetero-oligomeric AB5 type enterotoxin composed of a 27 kDa A subunit with toxic ADP ribosyl transferase activity and a stable noncovalent-linked pentamer of 11.6 kDa B subunits. ETEC infection and colonization of the small intestine, and the production of LT, causes acute diarrhea that can be fatal without intervention. The ADP-ribosylation of Gsα, catalyzed by the A subunit, triggers increased intracellular cAMP levels that induce chloride efflux and fluid loss from intoxicated cells lining the small intestine. The B subunit pentamer mediates holotoxin binding to ganglioside GM1 on intestinal epithelial cells, with lower affinity for GD1B, asialoGM1 and lactosylceramide gangliosides (Moravec et al., 2007).
  • Detailed Gene Information: Click here.
f. Adjuvant: complete Freunds adjuvant
  • VO ID: VO_0000139
  • Description: In the event of s.c. immunization, LTB was administered in complete Freund's adjuvant (Moravec et al., 2007).
g. Preparation
For immunization, transgenic LTB-laden soybean seeds were ground in 5 vol. of PBS at 4 °C, the extracts were clarified by microcentrifugation at 20,000 × g for 5 min, and the total protein concentration was measured using the Bradford method (Moravec et al., 2007).
h. Virulence
Soy LTB was biochemically stable, functionally active and highly immunogenic (Moravec et al., 2007).
i. Description
Effective needle-free immunization strategies are needed to accommodate large-scale vaccination programs and avoid injection-related risks. To improve the efficacy of oral vaccination, antigens can be co-administered, or fused with a strong mucosal adjuvant. LT is a potent immunogen whose adjuvant active dose is well below its immunogenic dose. LT and detoxified mutants of LT trigger a stronger antibody response than LTB to co-administered antigens on a dose-for-dose basis. However, recombinant LTB is safely and commonly used as an adjuvant to stimulate antibody responses to co-administered protein antigens. LTB has also been used experimentally for the prevention and treatment of autoimmune diseases. Importantly, LTB has been shown to protect against the development of oral tolerance to co-fed soluble vaccine proteins, a serious consideration in the food-based delivery of vaccines. Transgenic plants offer the possibility to both produce and deliver an oral immunogen on a large-scale with low production costs and minimal purification or enrichment, and the potential exists for direct formulation of vaccines into animal feed and human consumables. Soybean has great potential as a vaccine delivery platform because of its naturally high protein content, nutritional value and multiple product streams (Moravec et al., 2007).
j. Mouse Response
  • Host Strain: Inbred female C57BL/6J mice (Jackson Laboratory).
  • Vaccination Protocol: Mice were immunized with soluble protein extracts from LTB transgenic soybean seed or nontransgenic cv. Jack seed. Mice were fasted for 12 h, but allowed water ad libitum prior to oral immunization by gavage using a ball-tip feeding needle. Five mice were used per group. Group 1 was immunized s.c. with soybean extract, followed by secondary s.c. immunization after 14 days. Group 2 was primed with soybean LTB by s.c. immunization, then followed by immunization at weekly intervals by oral gavage. Group 3 was immunized by oral gavage at weekly intervals. Control mice were vaccinated by mock s.c. primary immunization followed by oral gavage or by oral gavage alone with a soluble protein extract made from nontransgenic soybean seed (Moravec et al., 2007).
  • Persistence: Not noted.
  • Immune Response: Immunization of mice with LTB transgenic soybean extracts elicited robust systemic anti-LTB IgG and IgA antibody responses, as well as significant levels of intestinal anti-LTB IgA. The serum anti-LTB IgG titer from mice immunized by parenteral primary immunization followed by a series of oral gavage boosts was approximately four-fold higher than in mice immunized by oral gavage only. Likewise, serum anti-LTB IgA titers rose more rapidly over the 35-day experimental period in mice undergoing prime-boost immunization than oral gavage. Following a final oral boost at day 48, serum IgA titers in both cases rose almost equivalently when measured at day 60, and significantly exceeded IgA levels elicited by parenteral immunization alone. These results demonstrate that systemic IgA responses were enhanced by oral mucosal immunization. Importantly, the fecal anti-LTB IgA titer in mice immunized by prime-boost was twice as high as that in mice immunized solely by gavage following the final boost at day 48. A comparison of the antibody responses in parenterally-immunized mice, mice immunized using a prime-boost regime, and mice immunized solely by oral gavage indicated that a more optimal balance of systemic IgG/IgA immunity, and mucosal sIgA immunity was achieved using a parenteral prime-oral gavage boost strategy.
  • Side Effects: Not noted.
  • Challenge Protocol: Following oral LTB immunization, protection against toxin challenge was determined using the patent mouse assay. Challenge of immunized mice was performed on day 64. Briefly, mice were fasted for 12 h and challenged by oral gavage with 200 μl of 0.9% saline containing 25 μg purified LT, or saline alone, using five mice per group. Intragastric delivery was performed using a ball-tip feeding needle. Water was available ad libitum. Three hours after toxin administration, mice were euthanized by CO2 inhalation (Moravec et al., 2007).
  • Efficacy: Partial protection against fluid accumulation in the gut was achieved following LT challenge of mice orally-immunized with soy LTB.
V. References
1. Acheson et al., 1996: Acheson DW, Levine MM, Kaper JB, Keusch GT. Protective immunity to Shiga-like toxin I following oral immunization with Shiga-like toxin I B-subunit-producing Vibrio cholerae CVD 103-HgR. Infection and immunity. 1996; 64(1); 355-357. [PubMed: 8557364].
2. Alteri et al., 2009: Alteri CJ, Hagan EC, Sivick KE, Smith SN, Mobley HL. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS pathogens. 2009; 5(9); e1000586. [PubMed: 19806177].
3. Berhanu et al., 2008: Berhanu A, Wilson RL, Kirkwood-Watts DL, King DS, Warren TK, Lund SA, Brown LL, Krupkin AK, Vandermay E, Weimers W, Honeychurch KM, Grosenbach DW, Jones KF, Hruby DE. Vaccination of BALB/c Mice with Escherichia coli-expressed Vaccinia Virus Proteins A27L, B5R, and D8L Protects Mice from Lethal Vaccinia Virus Challenge. Journal of virology. 2008; ; . [PubMed: 18199639].
4. Bielaszewska et al., 1997: Bielaszewska M, Clarke I, Karmali MA, Petric M. Localization of intravenously administered verocytotoxins (Shiga-like toxins) 1 and 2 in rabbits immunized with homologous and heterologous toxoids and toxin subunits. Infection and immunity. 1997; 65(7); 2509-2516. [PubMed: 9199412].
5. Billips et al., 2009: Billips BK, Yaggie RE, Cashy JP, Schaeffer AJ, Klumpp DJ. A live-attenuated vaccine for the treatment of urinary tract infection by uropathogenic Escherichia coli. The Journal of infectious diseases. 2009; 200(2); 263-272. [PubMed: 19522648].
6. Bozic et al., 2006: Bozic F, Lackovic G, Kovsca-Janjatovic A, Smolec O, Valpotic I. Levamisole synergizes experimental F4ac+ Escherichia coli oral vaccine in stimulating ileal Peyer's patch T cells in weaned pigs. Journal of veterinary pharmacology and therapeutics. 2006 Jun; 29(3); 199-204. [PubMed: 16669864].
7. Butterton et al., 1997: Butterton JR, Ryan ET, Acheson DW, Calderwood SB. Coexpression of the B subunit of Shiga toxin 1 and EaeA from enterohemorrhagic Escherichia coli in Vibrio cholerae vaccine strains. Infection and immunity. 1997; 65(6); 2127-2135. [PubMed: 9169742 ].
8. Byrd and Cassels, 2006: Byrd W, Cassels FJ. The encapsulation of enterotoxigenic Escherichia coli colonization factor CS3 in biodegradable microspheres enhances the murine antibody response following intranasal administration. Microbiology (Reading, England). 2006; 152(Pt 3); 779-786. [PubMed: 16514157].
9. Daley et al., 2007: Daley A, Randall R, Darsley M, Choudhry N, Thomas N, Sanderson IR, Croft N, Kelly P. Genetically modified enterotoxigenic escherichia coli vaccines induce mucosal immune responses without inflammation. Gut. 2007 Jun 12; ; . [PubMed: 17566016].
10. Dean-Nystrom et al., 2002: Dean-Nystrom EA, Gansheroff LJ, Mills M, Moon HW, O'Brien AD. Vaccination of pregnant dams with intimin(O157) protects suckling piglets from Escherichia coli O157:H7 infection. Infection and immunity. 2002; 70(5); 2414-2418. [PubMed: 11953378].
11. Durant et al., 2007: Durant L, Metais A, Soulama-Mouze C, Genevard JM, Nassif X, Escaich S. Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli. Infection and immunity. 2007 Apr; 75(4); 1916-25. [PubMed: 17145948 ].
12. Durant et al., 2007: Durant L, Metais A, Soulama-Mouze C, Genevard JM, Nassif X, Escaich S. Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli. Infection and immunity. 2007; 75(4); 1916-1925. [PubMed: 17145948].
13. ELBERG and FAUNCE, 1957: ELBERG SS, FAUNCE K Jr. Immunization against Brucella infection. VI. Immunity conferred on goats by a nondependent mutant from a streptomycin-dependent mutant strain of Brucella melitensis. Journal of bacteriology. 1957; 73(2); 211-217. [PubMed: 13416171].
14. Fan et al., 2011: Fan HY, Wang L, Luo J, Long BG. Protection against Escherichia coli O157:H7 challenge by immunization of mice with purified Tir proteins. Molecular biology reports. 2011; ; . [PubMed: 21567195].
15. Fujii et al., 2012: Fujii J, Naito M, Yutsudo T, Matsumoto S, Heatherly DP, Yamada T, Kobayashi H, Yoshida S, Obrig T. Protection by a recombinant Mycobacterium bovis Bacillus Calmette-Guerin vaccine expressing Shiga toxin 2 B subunit against Shiga toxin-producing Escherichia coli in mice. Clinical and vaccine immunology : CVI. 2012; 19(12); 1932-1937. [PubMed: 23035176].
16. Ghaem-Maghami et al., 2001: Ghaem-Maghami M, Simmons CP, Daniell S, Pizza M, Lewis D, Frankel G, Dougan G. Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium. Infection and immunity. 2001; 69(9); 5597-5605. [PubMed: 11500434 ].
17. Hagan and Mobley, 2007: Hagan EC, Mobley HL. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infection and immunity. 2007; 75(8); 3941-3949. [PubMed: 17517861].
18. Hancock et al., 2008: Hancock V, Ferrières L, Klemm P. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology (Reading, England). 2008; 154(Pt 1); 167-175. [PubMed: 18174135].
19. Horne et al., 2002: Horne C, Vallance BA, Deng W, Finlay BB. Current progress in enteropathogenic and enterohemorrhagic Escherichia coli vaccines. Expert review of vaccines. 2002; 1(4); 483-493. [PubMed: 12901587 ].
20. Hu et al., 2009: Hu CX, Xu ZR, Li WF, Niu D, Lu P, Fu LL. Secretory expression of K88 (F4) fimbrial adhesin FaeG by recombinant Lactococcus lactis for oral vaccination and its protective immune response in mice. Biotechnology letters. 2009; 31(7); 991-997. [PubMed: 19277476].
21. Judge et al., 2004: Judge NA, Mason HS, O'Brien AD. Plant cell-based intimin vaccine given orally to mice primed with intimin reduces time of Escherichia coli O157:H7 shedding in feces. Infection and immunity. 2004 Jan; 72(1); 168-75. [PubMed: 14688094 ].
22. Keller et al., 2010: Keller R, Hilton TD, Rios H, Boedeker EC, Kaper JB. Development of a live oral attaching and effacing Escherichia coli vaccine candidate using Vibrio cholerae CVD 103-HgR as antigen vector. Microbial pathogenesis. 2010; 48(1); 1-8. [PubMed: 19878715].
23. Kwaga et al., 1994: Kwaga JK, Allan BJ, van der Hurk JV, Seida H, Potter AA. A carAB mutant of avian pathogenic Escherichia coli serogroup O2 is attenuated and effective as a live oral vaccine against colibacillosis in turkeys. Infection and immunity. 1994; 62(9); 3766-3772. [PubMed: 8063392].
24. Langermann et al., 1997: Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science (New York, N.Y.). 1997; 276(5312); 607-611. [PubMed: 9110982].
25. Leyten et al., 2005: Leyten EM, Soonawala D, Schultsz C, Herzog C, Ligthelm RJ, Wijnands S, Visser LG. Analysis of efficacy of CVD 103-HgR live oral cholera vaccine against all-cause travellers' diarrhoea in a randomised, double-blind, placebo-controlled study. Vaccine. 2005; 23(43); 5120-5126. [PubMed: 15982790].
26. Liu et al., 2009: Liu J, Sun Y, Feng S, Zhu L, Guo X, Qi C. Towards an attenuated enterohemorrhagic Escherichia coli O157:H7 vaccine characterized by a deleted ler gene and containing apathogenic Shiga toxins. Vaccine. 2009; 27(43); 5929-5935. [PubMed: 19682616].
27. Lynne et al., 2006: Lynne AM, Foley SL, Nolan LK. Immune response to recombinant Escherichia coli Iss protein in poultry. Avian diseases. 2006 Jun; 50(2); 273-6. [PubMed: 16863080].
28. Marcato et al., 2001: Marcato P, Mulvey G, Read RJ, Vander Helm K, Nation PN, Armstrong GD. Immunoprophylactic potential of cloned Shiga toxin 2 B subunit. The Journal of infectious diseases. 2001; 183(3); 435-443. [PubMed: 11133375].
29. Mason et al., 1998: Mason HS, Haq TA, Clements JD, Arntzen CJ. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine. 1998; 16(13); 1336-1343. [PubMed: 9682399 ].
30. Melkebeek et al., 2007: Melkebeek V, Verdonck F, Goddeeris BM, Cox E. Comparison of immune responses in parenteral FaeG DNA primed pigs boosted orally with F4 protein or reimmunized with the DNA vaccine. Veterinary immunology and immunopathology. 2007 Apr 15; 116(3-4); 199-214. [PubMed: 17331591].
31. Moravec et al., 2007: Moravec T, Schmidt MA, Herman EM, Woodford-Thomas T. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine. 2007 Feb 19; 25(9); 1647-57. [PubMed: 17188785].
32. Pascual et al., 1999: Pascual DW, Hone DM, Hall S, van Ginkel FW, Yamamoto M, Walters N, Fujihashi K, Powell RJ, Wu S, Vancott JL, Kiyono H, McGhee JR. Expression of recombinant enterotoxigenic Escherichia coli colonization factor antigen I by Salmonella typhimurium elicits a biphasic T helper cell response. Infection and immunity. 1999; 67(12); 6249-6256. [PubMed: 10569734 ].
33. Pathport: Escherichia coli [http://pathport.vbi.vt.edu/pathinfo/]
34. Potter et al., 2004: Potter AA, Klashinsky S, Li Y, Frey E, Townsend H, Rogan D, Erickson G, Hinkley S, Klopfenstein T, Moxley RA, Smith DR, Finlay BB. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine. 2004; 22(3-4); 362-369. [PubMed: 14670317].
35. Pubmed: Protein search [http://www.ncbi.nlm.nih.gov.proxy.lib.umich.edu/sites/entrez?db=Protein]
36. Russo et al., 2007: Russo TA, Beanan JM, Olson R, Genagon SA, MacDonald U, Cope JJ, Davidson BA, Johnston B, Johnson JR. A killed, genetically engineered derivative of a wild-type extraintestinal pathogenic E. coli strain is a vaccine candidate. Vaccine. 2007 May 10; 25(19); 3859-70. [PubMed: 17306426].
37. Thankavel et al., 1997: Thankavel K, Madison B, Ikeda T, Malaviya R, Shah AH, Arumugam PM, Abraham SN. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. The Journal of clinical investigation. 1997; 100(5); 1123-1136. [PubMed: 9276729].
38. Turner et al., 2006: Turner AK, Beavis JC, Stephens JC, Greenwood J, Gewert C, Thomas N, Deary A, Casula G, Daley A, Kelly P, Randall R, Darsley MJ. Construction and phase I clinical evaluation of the safety and immunogenicity of a candidate enterotoxigenic Escherichia coli vaccine strain expressing colonization factor antigen CFA/I. Infection and immunity. 2006 Feb; 74(2); 1062-71. [PubMed: 16428753].
39. Van et al., 2005: Van Donkersgoed J, Hancock D, Rogan D, Potter AA. Escherichia coli O157:H7 vaccine field trial in 9 feedlots in Alberta and Saskatchewan. The Canadian veterinary journal. La revue veterinaire canadienne. 2005; 46(8); 724-728. [PubMed: 16187717].
40. van et al., 2007: van Diemen PM, Dziva F, Abu-Median A, Wallis TS, van den Bosch H, Dougan G, Chanter N, Frankel G, Stevens MP. Subunit vaccines based on intimin and Efa-1 polypeptides induce humoral immunity in cattle but do not protect against intestinal colonisation by enterohaemorrhagic Escherichia coli O157:H7 or O26:H-. Veterinary immunology and immunopathology. 2007 Mar 15; 116(1-2); 47-58. [PubMed: 17258324].
41. Walker et al., 2007: Walker RI, Steele D, Aguado T. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine. 2007 Mar 30; 25(14); 2545-66. [PubMed: 17224212].
42. Wen et al., 2006: Wen SX, Teel LD, Judge NA, O'Brien AD. A plant-based oral vaccine to protect against systemic intoxication by Shiga toxin type 2. Proceedings of the National Academy of Sciences of the United States of America. 2006 May 2; 103(18); 7082-7. [PubMed: 16641102].
43. Wennerås et al., 1992: Wennerås C, Svennerholm AM, Ahrén C, Czerkinsky C. Antibody-secreting cells in human peripheral blood after oral immunization with an inactivated enterotoxigenic Escherichia coli vaccine. Infection and immunity. 1992; 60(7); 2605-2611. [PubMed: 1612730].
44. Zhang et al., 2006: Zhang J, Shi Z, Kong FK, Jex E, Huang Z, Watt JM, Van Kampen KR, Tang DC. Topical application of Escherichia coli-vectored vaccine as a simple method for eliciting protective immunity. Infection and immunity. 2006 Jun; 74(6); 3607-17. [PubMed: 16714593].